606
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Influence of Stefan blowing and variable thermal conductivity in magnetized flow of Sutterby nanofluid through porous medium

, , , &
Article: 2234706 | Received 15 Feb 2023, Accepted 05 Jul 2023, Published online: 16 Jul 2023

References

  • Zaib A, Khan U, Khan I, et al. Entropy generation and dual solutions in mixed convection stagnation point flow of micropolar Ti6Al4V nanoparticle along a Riga surface. Processes. 2020;8:14. doi:10.3390/pr8010014
  • Khan U, Zaib A, Shah Z, et al. Impact of magnetic field on boundary-layer flow of Sisko liquid comprising nanomaterials migration through radially shrinking/stretching surface with zero mass flux. J Mater Res Technol. 2020;9:3699–3709. doi:10.1016/j.jmrt.2020.01.107
  • Singh K, Pandey AK, Kumar M. Numerical solution of micropolar fluid flow via stretchable surface with chemical reaction and melting heat transfer using Keller–Box method. Propul Power Res. 2021;10:194–207. doi:10.1016/j.jppr.2020.11.006
  • Fang F, Kumar RN, Prasannakumara BC, et al. Aspects of uniform horizontal magnetic field and nanoparticle aggregation in the flow of nanofluid with melting heat transfer. Nanomaterials. 2022;12:1000. doi:10.3390/nano12061000
  • Ali B, Shafiq A, Siddique I, et al. Significance of suction/injection gravity modulation, thermal radiation, and magnetohydrodynamic on dynamics of micropolar fluid subject to an inclined sheet via finite element approach. Case Stud Therm Eng. 2021;28:101537. doi:10.1016/j.csite.2021.101537
  • Ali B, Thumma T, Habib D, et al. Finite element analysis on transient MHD 3D rotating flow of Maxwell and tangent hyperbolic nanofluid past a bidirectional stretching sheet with Cattaneo Christov heat flux model. Therm Sci Eng Prog. 2022;28:101089. doi:10.1016/j.tsep.2021.101089
  • Ali B, Siddique I, Ahmadian A, et al. Significance of Lorentz and Coriolis forces on dynamics of water based silver tiny particles via finite element simulation. Ain Shams Eng J. 2022;13:101572. doi:10.1016/j.asej.2021.08.014
  • Shevchuk IV. Convective heat and mass transfer in rotating disk systems. Heidelberg: Springer Verlag, Berlin; 2009.
  • Shevchuk IV. Modelling of convective heat and mass transfer in rotating flows. Springer Berlin, Heidelberg: Springer International Publishing Switzerland; 2016.
  • Bhatti MM, Shahid A, Sarris IE, et al. Spectral relaxation computation of Maxwell fluid flow from a stretching surface with quadratic convection and non-Fourier heat flux using Lie symmetry transformations. Int J Mod Phys B. 2023;37:2350082. doi:10.1142/S0217979223500820
  • Zhang L, Tariq N, Bhatti MM. Study of nonlinear quadratic convection on magnetized viscous fluid flow over a non-Darcian circular elastic surface via spectral approach. J Taibah Univ Sci. 2023;17:2183702. doi:10.1080/16583655.2023.2183702
  • Mahanthesh B, Gireesha BJ, Shehzad SA, et al. Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition. Phys B. 2018;537:98–104. doi:10.1016/j.physb.2018.02.009
  • Ahmed J, Khan M, Ahmad L. Transient thin film flow of nonlinear radiative Maxwell nanofluid over a rotating disk. Phys Lett A. 2019;383:1300–1305. doi:10.1016/j.physleta.2019.01.024
  • Turkyilmazoglu M. Suspension of dust particles over a stretchable rotating disk and two-phase heat transfer. Int J Multiphase Flow. 2020;127:103260. doi:10.1016/j.ijmultiphaseflow.2020.103260
  • Hafeez A, Khan M, Ahmed J. Flow of Oldroyd-B fluid over a rotating disk with Cattaneo–Christov theory for heat and mass fluxes. Comput Methods Programs Biomed. 2020;191:105374. doi:10.1016/j.cmpb.2020.105374
  • Abbasi A, Mabood F, Farooq W, et al. Bioconvective flow of viscoelastic nanofluid over a convective rotating stretching disk. Int Commun Heat Mass Transfer. 2020;119:104921. doi:10.1016/j.icheatmasstransfer.2020.104921
  • Shehzad SA, Mabood F, Rauf A, et al. Rheological features of non-Newtonian nanofluids flows induced by stretchable rotating disk. Phys Scr. 2021;96:035210. doi:10.1088/1402-4896/abd652
  • Hayat T, Ahmad S, Khan MI, et al. Modeling chemically reactive flow of Sutterby nanofluid by a rotating disk in presence of heat generation/absorption. Commun Theor Phys. 2018;69:569–576. doi:10.1088/0253-6102/69/5/569
  • Hayat T, Afzal S, Khan MI, et al. Irreversibility aspects to flow Sutterby fluid subject to nonlinear heat flux and Joule heating. Appl Nanosci. 2019;9:1215–1226. doi:10.1007/s13204-019-01015-3
  • Khan MI, Qayyum S, Hayat T, et al. Stratified flow of Sutterby fluid with homogeneous–heterogeneous reactions and Cattaneo–Christov heat flux. Int J Numer Methods Heat Fluid Flow. 2019;29:2977–2992. doi:10.1108/HFF-12-2018-0762
  • Hayat T, Masood F, Qayyum S, et al. Sutterby fluid flow subject to homogeneous-heterogeneous reactions and nonlinear radiation. Physica A. 2020;544:123439. doi:10.1016/j.physa.2019.123439
  • Rehman S, Mir NA, Farooq M, et al. Analysis of thermally stratified flow of Sutterby nanofluid with zero mass flux condition. J Mater Res Technol. 2020;9:1631–1639. doi:10.1016/j.jmrt.2019.11.088
  • Sohail M, Naz R. Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in stretching cylinder. Physica A. 2020;549:124088. doi:10.1016/j.physa.2019.124088
  • Usman PL, Ghaffari A. Heat and mass transfer in a steady flow of Sutterby nanofluid over the surface of a stretching wedge. Phys Scr. 2021;96:065003. doi:10.1088/1402-4896/abecf7
  • Aldabesh A, Haredy A, Al-Khaled K, et al. Darcy resistance flow of Sutterby nanofluid with microorganisms with applications of nano-biofuel cells. Sci Rep. 2022;12. doi:10.1038/s41598-022-11528-7
  • Abbas N, Shatanawi W, Shatnawi TAM, et al. Theoretical analysis of induced MHD Sutterby fluid flow with variable thermal conductivity and thermal slip over a stretching cylinder. AIMS Mathematics. 2023;8:10146–10159. doi:10.3934/math.2023513
  • Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows. Am Soc Mech Eng. 1995;66:99–105.
  • Li Z, Sheikholeslami M, Jafaryar M, et al. Investigation of nanofluid entropy generation in a heat exchanger with helical twisted tapes. J Mol Liq. 2018;266:797–805. doi:10.1016/j.molliq.2018.07.009
  • Sheikholeslami M, Farshad SA, Ebrahimpour Z, et al. Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: a review. J Cleaner Prod. 2021;293:126119. doi:10.1016/j.jclepro.2021.126119
  • Rehman KU, Malik MY, Zahri M, et al. Numerical analysis of MHD Casson Navier’s slip nanofluid flow yield by rigid rotating disk. Results Phys. 2018;8:744–751. doi:10.1016/j.rinp.2018.01.017
  • Aziz A, Alsaedi A, Muhammad T, et al. Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk. Results Phys. 2018;8:785–792. doi:10.1016/j.rinp.2018.01.009
  • Ijaz M, Ayub M, Khan H. Entropy generation and activation energy mechanism in nonlinear radiative flow of sisko nanofluid: rotating disk. Heliyon. 2019;6:e01863. doi:10.1016/j.heliyon.2019.e01863
  • Ahmed J, Khan N, Ahmed L. Radiative heat flux effect in flow of Maxwell nanofluid over a spiraling disk with chemically reaction. Physica A. 2020;551:123948. doi:10.1016/j.physa.2019.123948
  • Naqvi SMRS, Kim HM, Muhammad T, et al. Numerical study for slip flow of Reiner–Rivlin nanofluid due to a rotating disk. Int Commun Heat Mass Transfer. 2020;116:104643. doi:10.1016/j.icheatmasstransfer.2020.104643
  • Zaib A, Haq RU, Sheikholeslami M, et al. Numerical analysis of effective Prandtl model on mixed convection flow of γAl2O3–H2O nanoliquids with micropolar liquid driven through wedge. Phys Scr. 2020;95:035005. doi:10.1088/1402-4896/ab5558
  • Khan U, Zaib A, Ishak A. Magnetic field effect on Sisko fluid flow containing gold nanoparticles through a porous curved surface in the presence of radiation and partial slip. Mathematics. 2021;9:921. doi:10.3390/math9090921
  • Upreti H, Pandey AK, Kumar M. Assessment of entropy generation and heat transfer in three-dimensional hybrid nanofluids flow due to convective surface and base fluids. J Porous Media. 2021;24:35–50. doi:10.1615/JPorMedia.2021036038
  • Pandey AK, Upreti H, joshi N, et al. Effect of natural convection on 3D MHD flow of MoS2GO/H2O via porous surface due to multiple slip mechanisms. J Taibah Univ Sci. 2022;16:749–762. doi:10.1080/16583655.2022.2113729
  • Joshi N, Upreti H, Pandey AK. MHD Darcy–Forchheimer Cu–Ag/H2O–C2C6O2 hybrid nanofluid flow via a porous stretching sheet with suction/blowing and viscous dissipation. Int J Comput Methods Eng Sci Mech. 2022;23:527–535. doi:10.1080/15502287.2022.2030426
  • Upreti H, Uddin Z, Pandey AK, et al. Particle swarm optimization based numerical study for pressure, flow, and heat transfer over a rotating disk with temperature dependent nanofluid properties. Numer Heat Transf. Part A: Appl. 2023;83:815–844. doi:10.1080/10407782.2022.2156412
  • Upreti H, Pandey AK, Joshi N, et al. Thermodynamics and heat transfer analysis of magnetized Casson hybrid nanofluid flow via a Riga plate with thermal radiation. J Comput Biophys Chem. 2023;22:321–334. doi:10.1142/S2737416523400070
  • Rauf A, Abbas Z, Shehzad SA, et al. Characterization of temperature-dependent fluid properties in compressible viscous fluid flow induced by oscillation of disk. Choas Solitons Fract. 2020;132:109573. doi:10.1016/j.chaos.2019.109573
  • Naganthran K, Mustafa M, Mushtaq A, et al. Dual solutions for fluid flow over a stretching/shrinking rotating disk subject to variable fluid properties. Physica A. 2020;556:124773. doi:10.1016/j.physa.2020.124773
  • Rafiq T, Mustafa M, Farooq MA. Modeling heat transfer in fluid flow near a decelerating rotating disk with variable fluid properties. Int Commun Heat Mass Transfer. 2020;116:104673. doi:10.1016/j.icheatmasstransfer.2020.104673
  • Shehzad SA, Abbas Z, Rauf A, et al. Effectiveness of Hall current and thermophysical properties in compressible flow of viscous fluid through spinning oscillatory disk. Int Commun Heat Mass Transfer. 2020;116:104678. doi:10.1016/j.icheatmasstransfer.2020.104678
  • Khan M, Salahuddin T, Stephen SO. Thermo-physical characteristics of liquids and gases near a rotating disk. Choas Solitons Fract. 2020;141:110304. doi:10.1016/j.chaos.2020.110304
  • Khan M, Salahuddin T, Stephen SO. Variable thermal conductivity and diffusivity of liquids and gases near a rotating disk with temperature dependent viscosity. J Mol Liq. 2021;333:115749. doi:10.1016/j.molliq.2021.115749
  • Latiff NA, Uddin MJ, Ismail AIM. Stefan blowing effect on bioconvective flow of nanofluid over a solid rotating stretchable disk. Propulsion Power Res. 2016;5:267–278. doi:10.1016/j.jppr.2016.11.002
  • Zohra FT, Uddin MJ, Ismail AIM, et al. Anisotropic slip magneto-bioconvection flow from a rotating cone to a nanofluid with Stefan blowing effects. Chin J Phys. 2018;56:432–448. doi:10.1016/j.cjph.2017.08.031
  • Mabood F, Rauf A, Prasannakumara BC, et al. Impacts of Stefan blowing and mass convection on flow of Maxwell nanofluid of variable thermal conductivity about a rotating disk. Chin J Phys. 2021;71:260–272. doi:10.1016/j.cjph.2021.03.003