1,027
Views
10
CrossRef citations to date
0
Altmetric
Research Article

The structural and dielectric properties of lanthanum substituted strontium based spinel ferrites nano-materials for high frequency device applications

, &
Article: 2236368 | Received 22 Mar 2023, Accepted 03 Jul 2023, Published online: 20 Jul 2023

References

  • Amiri M, Salavati-Niasari M, Akbari A. Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv Colloid Interface Sci. 2019;265:29–44. doi:10.1016/j.cis.2019.01.003
  • Rehman AU, Sharif S, Hegazy HH, et al. Low dielectric loss, and enhanced magneto-dielectric properties of Cu0. 5Cd0. 5-xCoxFe2O4 ferrites via CO2 + substitution. Mater Today Commun. 2023: 105371. doi:10.1016/j.mtcomm.2023.105371
  • Rehman AU, Abbas G, Ayoub B, et al. Impact of Ni2+ on the structural, optical, electrical, and dielectric properties of Cu0.25Co0.25Mg0.5-xNixCe0.03Fe1.97O4 spinel ferrites synthesized via sol-gel auto combustion (SGAC) route. Mater Sci Eng B. 2023;291:116407. doi:10.1016/j.mseb.2023.116407
  • Abbas G, Ur Rehman A, Gull W, et al. Impact of Co2 + on the spectral, optoelectrical, and dielectric properties of Mg 0.25 Ni 0.25 Cu 0.5− x Co x Fe 1.97 La 0.03 O 4 ferrites prepared via sol–gel auto-combustion route. J Sol-Gel Sci Technol. 2022;101(2):428–442. doi:10.1007/s10971-021-05713-9
  • Nadeem Riaz K, Yousaf N, Tahir MB, et al. Facile hydrothermal synthesis of 3D flower-like La-MoS2 nanostructure for photocatalytic hydrogen energy production. Int J Energy Res. 2019;43(1):491–499. doi:10.1002/er.4286
  • Mehmood K, Ur Rehman A, Amin N, et al. Graphene nanoplatelets/Ni-Co-Nd spinel ferrite composites with improving dielectric properties. J Alloys Compd. 2023;930:167335), doi:10.1016/j.jallcom.2022.167335
  • Rehman AU, Morley NA, Amin N, et al. Controllable synthesis of La3+ doped Zn0. 5Co0.25Cu0.25Fe2−xLaxO4 (x = 0.0, 0.0125, 0.025, 0.0375, 0.05) nano-ferrites by sol-gel auto-combustion route. Ceram Int. 2020;46(18):29297–29308. doi:10.1016/j.ceramint.2020.08.106
  • Ali MA, Khan MNI, Chowdhury F-U-Z, et al. Yttrium-substituted Mg–Zn ferrites: correlation of physical properties with Yttrium content. J Mater Sci Mater Electron. 2019;30(14):13258–13270. doi:10.1007/s10854-019-01689-z
  • Ali MA, Uddin MM, Khan MNI, et al. Structural, morphological and electrical properties of Sn-substituted Ni-Zn ferrites synthesized by double sintering technique. J Magn Magn Mater. 2017;424:148–154. doi:10.1016/j.jmmm.2016.10.027
  • Rehman AU, Amin N, Bilal Tahir M, et al. Evaluation of spectral, optoelectrical, dielectric, magnetic, and morphological properties of RE3+ (La3+, and Ce3+) and Co2+ co-doped Zn0.75Cu0.25Fe2O4 ferrites. Mater Chem Phys. 2022;275:125301. doi:10.1016/j.matchemphys.2021.125301
  • Tahir MB, Ali S, Rizwan M. A review on remediation of harmful dyes through visible light-driven WO3 photocatalytic nanomaterials. Int J Environ Sci Technol. 2019;16:4975–4988. doi:10.1007/s13762-019-02385-5
  • Tahir MB, Tufail S, Ahmad A, et al. Semiconductor nanomaterials for the detoxification of dyes in real wastewater under visible-light photocatalysis. Int J Environ Anal Chem. 2021;101(12):1735–1749. doi:10.1080/03067319.2019.1686494
  • Tahir MB, Nawaz T, Nabi G, et al. Role of nanophotocatalysts for the treatment of hazardous organic and inorganic pollutants in wastewater. Int J Environ Anal Chem. 2022;102(2):491–515. doi:10.1080/03067319.2020.1723570
  • Shahzad K, Bilal Tahir M, Sagir M, et al. Role of CuCo2S4 in Z-scheme MoSe2/BiVO4 composite for efficient photocatalytic reduction of heavy metals. Ceram Int. 2019;45(17):23225–23232. doi:10.1016/j.ceramint.2019.08.018
  • Tahir MB, Ashraf M, Rafique M, et al. Activated carbon doped WO3 for photocatalytic degradation of rhodamine-B. Appl Nanosci. 2020;10:869–877. doi:10.1007/s13204-019-01141-y
  • Tahir MB, Ahmad A, Iqbal T, et al. Advances in photo-catalysis approach for the removal of toxic personal care product in aqueous environment. Environ Develop Sustain. 2020;22:6029–6052. doi:10.1007/s10668-019-00495-1
  • Tahir MB, Rafique M, Khan MI, et al. Enhanced photocatalytic hydrogen energy production of g-C3N4-WO3 composites under visible light irradiation. Int J Energy Res. 2018;42(15):4667–4673. doi:10.1002/er.4208
  • Tahir MB, Asiri AM, Nawaz T. A perspective on the fabrication of heterogeneous photocatalysts for enhanced hydrogen production. Int J Hydrogen Energy. 2020;45(46):24544–24557. doi:10.1016/j.ijhydene.2020.06.301
  • Tahir MB, Farman S, Rafique M, et al. Photocatalytic performance of hybrid WO3/TiO2 nanomaterials for the degradation of methylene blue under visible light irradiation. Int J Environ Anal Chem. 2021;101(10):1448–1460. doi:10.1080/03067319.2019.1685093
  • Kalaiselvan CR, Laha SS, Somvanshi SB, et al. Manganese ferrite (MnFe2O4) nanostructures for cancer theranostics. Coord Chem Rev. 2022;473:214809. doi:10.1016/j.ccr.2022.214809
  • Sagayaraj R, Aravazhi S, Chandrasekaran G. Review on structural and magnetic properties of (Co–Zn) ferrite nanoparticles. Int Nano Lett. 2021;11(4):307–319. doi:10.1007/s40089-021-00343-z
  • Somvanshi SB, Kharat PB, Saraf TS, et al. Multifunctional nano-magnetic particles assisted viral RNA-extraction protocol for potential detection of COVID-19. Mater Res Innovations. 2021;25(3):169–174. doi:10.1080/14328917.2020.1769350
  • Somvanshi SB, Patade SR, Andhare DD, et al. Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: enhancement via hydrophobic-to-hydrophilic surface transformation. J Alloys Compd. 2020;835:155422. doi:10.1016/j.jallcom.2020.155422
  • Ahmad I, Shah SM, Zafar MN, et al. Fabrication of highly resistive La–Zn co-substituted spinel strontium nanoferrites for high frequency devices applications. Mater Chem Phys. 2021;259:124031), doi:10.1016/j.matchemphys.2020.124031
  • Ahmad I, Shah SM, Zafar MN, et al. Fabrication of highly resistive La–Zn co-substituted spinel strontium nanoferrites for high frequency devices applications. Mater Chem Phys. 2021;259:124031. doi:10.1016/j.matchemphys.2020.124031
  • Somvanshi SB, Kharat PB, Jadhav KM. Surface functionalized superparamagnetic Zn-Mg ferrite nanoparticles for magnetic hyperthermia application towards noninvasive cancer treatment. Macromol Symp. 2021;400(1):2100124. doi:10.1002/masy.202100124
  • Somvanshi SB, Jadhav SA, Gawali SS, et al. Core-shell structured superparamagnetic Zn-Mg ferrite nanoparticles for magnetic hyperthermia applications. J Alloys Compd. 2023;947:169574), doi:10.1016/j.jallcom.2023.169574
  • Kharat PB, Somvanshi SB, Somwanshi SB, et al. Synthesis, characterization and hyperthermic evaluation of PEGylated superparamagnetic MnFe2O4 ferrite nanoparticles for cancer therapeutics applications. Macromol Symp. 2021;400(1):2100130), doi:10.1002/masy.202100130
  • Patade SR, Andhare DD, Somvanshi SB, et al. Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram Int. 2020;46(16):25576–25583. doi:10.1016/j.ceramint.2020.07.029
  • Somvanshi SB, Kharat PB, Khedkar MV, et al. Hydrophobic to hydrophilic surface transformation of nano-scale zinc ferrite via oleic acid coating: magnetic hyperthermia study towards biomedical applications. Ceram Int. 2020;46(6):7642–7653. doi:10.1016/j.ceramint.2019.11.265
  • Somvanshi SB, Khedkar MV, Kharat PB, et al. Influential diamagnetic magnesium (Mg2+) ion substitution in nano-spinel zinc ferrite (ZnFe2O4): thermal, structural, spectral, optical and physisorption analysis. Ceram Int. 2020;46(7):8640–8650. doi:10.1016/j.ceramint.2019.12.097
  • Humbe AV, Kounsalye JS, Somvanshi SB, et al. Cation distribution, magnetic and hyperfine interaction studies of Ni–Zn spinel ferrites: role of Jahn Teller ion (Cu2+) substitution. Materials Advances. 2020;1(4):880–890. doi:10.1039/D0MA00251H
  • Somvanshi SB, Jadhav SA, Khedkar MV, et al. Structural, thermal, spectral, optical and surface analysis of rare earth metal ion (Gd3+) doped mixed Zn–Mg nano-spinel ferrites. Ceram Int. 2020;46(9):13170–13179. doi:10.1016/j.ceramint.2020.02.091
  • Haque SU, Saikia KK, Murugesan G, et al. A study on dielectric and magnetic properties of lanthanum substituted cobalt ferrite. J Alloys Compd. 2017;701:612–618. doi:10.1016/j.jallcom.2016.11.309
  • Sbiaa R, Meng H, Piramanayagam SN. Materials with perpendicular magnetic anisotropy for magnetic random access memory. Phys Status Solidi RRL. 2011;5(12):413–419. doi:10.1002/pssr.201105420
  • Bharati VA, Somvanshi SB, Humbe AV, et al. Influence of trivalent Al–Cr co-substitution on the structural, morphological and Mössbauer properties of nickel ferrite nanoparticles. J Alloys Compd. 2020;821:153501. doi:10.1016/j.jallcom.2019.153501
  • Bhosale AB, Somvanshi SB, Murumkar VD, et al. Influential incorporation of RE metal ion (Dy3+) in yttrium iron garnet (YIG) nanoparticles: Magnetic, electrical and dielectric behaviour. Ceram Int. 2020;46(10):15372–15378. doi:10.1016/j.ceramint.2020.03.081
  • Al-Hilli MF, Li S, Kassim KS. Structural analysis, magnetic and electrical properties of samarium substituted lithium–nickel mixed ferrites. J Magn Magn Mater. 2012;324(5):873–879. doi:10.1016/j.jmmm.2011.10.005
  • Bhosale AB, Somvanshi SB, Murumkar VD, et al. Influential incorporation of RE metal ion (Dy3+) in yttrium iron garnet (YIG) nanoparticles: Magnetic, electrical and dielectric behaviour. Ceram Int. 2020;46(10):15372–15378. doi:10.1016/j.ceramint.2020.03.081
  • Khirade PP, Vinayak V, Kharat PB, et al. Green Synthesis of Ba1-xSrxTiO3 ceramic nanopowders by sol-gel combustion method using lemon juice as a fuel: Tailoring of Microstructure, ferroelectric, dielectric and electrical properties. Opt Mater (Amst). 2021;111:110664. doi:10.1016/j.optmat.2020.110664
  • Khirade PP, Raut AV, Alange RC, et al. Structural, electrical and dielectric investigations of cerium doped barium zirconate (BaZrO3) nano-ceramics produced via green synthesis: Probable candidate for solid oxide fuel cells and microwave applications. Phys B. 2021;613:412948.
  • Rajeshwari A, Punithavthy IK, Jeyakumar SJ, et al. Dependance of lanthanum ions on structural, magnetic and electrical of manganese based spinel nanoferrites. Ceram Int. 2020;46(5):6860–6870. doi:10.1016/j.ceramint.2019.11.180
  • Lasheras X, Insausti M, de la Fuente JM, et al. Mn-doping level dependence on the magnetic response of MnxFe3-xO4 ferrite nanoparticles. Dalton Trans. 2019;48(30):11480–11491. doi:10.1039/C9DT01620A
  • He W, Guo W, Wu H, et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv Mater. 2021;33(50):2005937. doi:10.1002/adma.202005937
  • Rathod SM, Chavan AR, Jadhav SS, et al. Ag+ ion substituted CuFe2O4 nanoparticles: analysis of structural and magnetic behavior. Chem Phys Lett. 2021;765:138308. doi:10.1016/j.cplett.2020.138308
  • Chavan AR, Vinayak V, Rathod SM, et al. Diverse physical characteristics of mixed Li–Mg spinel ferrite thin films fabricated by spray pyrolysis technique. Phys B. 2021;615:413075. doi:10.1016/j.physb.2021.413075
  • Khirade PP, Chavan AR, Somvanshi SB, et al. Tuning of physical properties of multifunctional Mg-Zn spinel ferrite nanocrystals: a comparative investigations manufactured via conventional ceramic versus green approach sol-gel combustion route. Mater Res Express. 2020;7(11):116102. doi:10.1088/2053-1591/abca6c
  • Chavan AR, Khirade PP, Somvanshi SB, et al. Eco-friendly green synthesis and characterizations of CoFe2-xAlxO4 nanocrystals: analysis of structural, magnetic, electrical, and dielectric properties. J Nanostruct Chem. 2021: 1–13.
  • Farid HMT, Morsi M, Ti A-M. Optoelectronic and thermoelectric properties of A3AsN in cubic and orthorhombic phase. J Mater Res Technol. 2021;13:1485–1495. doi:10.1016/j.jmrt.2021.05.032
  • Shah MS, Yasmeen F, Ejaz SR. Structure, electronic, magnetic and thermoelectric properties of the highly Mg-rich intermetallic NdNiMg by hybrid density functional theory. J Electron Mater. 2021;50:3976–3985. doi:10.1007/s11664-021-08923-7
  • Farid MT, Ahmad I, Kanwal M, et al. Magnetic and electric behavior of praseodymium substituted CuPryFe2-yO4 ferrites. J Magn Magn Mater. 2017;422:337–343. doi:10.1016/j.jmmm.2016.09.016
  • Aman S, Ahmad N, Alhossainy MH, et al. Structural, magnetic, electrical and microwave properties of spinel ferrites. J Rare Earths. 2022;40(3):443–450. doi:10.1016/j.jre.2021.04.015
  • Qindeel R, Alonizan NH. Structural, dielectric and magnetic properties of cobalt based spinel ferrites. Curr Appl Phys. 2018;18(5):519–525. doi:10.1016/j.cap.2018.03.004