642
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Hyperforin-mediated anticancer mechanisms in MDA-MB-231 cell line: insights into apoptotic mediator modulation and caspase activation

, , , , , , & show all
Article: 2237712 | Received 29 Jan 2023, Accepted 13 Jul 2023, Published online: 08 Aug 2023

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Wong WJ, Mosiun JA, Hidayati Z, et al. Low breast conserving surgery (BCS) rates in public hospitals in Malaysia: The effect of stage and ethnicity. Breast. 2019;46:136–143. doi:10.1016/j.breast.2019.05.016
  • Htay MNN, Dahlui M, Schliemann D, et al. Changing health beliefs about breast cancer screening among women in multi-ethnic Malaysia. Int J Environ Res Public Health. 2022;19(3):1618, doi:10.3390/ijerph19031618
  • Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288–300. doi:10.1001/jama.2018.19323
  • He L, Wick N, Germans SK, et al. The role of breast cancer stem cells in chemoresistance and metastasis in triple-negative breast cancer. Cancers (Basel). 2021;13(24):6209), doi:10.3390/cancers13246209
  • Niu Y, Bai J, Kamm RD, et al. Validating antimetastatic effects of natural products in an engineered microfluidic platform mimicking tumor microenvironment. Mol Pharm. 2014;11(7):2022–2029. doi:10.1021/mp500054h
  • Choi JS, Park KY, Moon SH, et al. Antimutagenic effect of plant flavonoids in the Salmonella assay system. Arch Pharm Res. 1994;17(2):71–75. doi:10.1007/BF02974226
  • Niu G, Chen X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets. 2010;11(8):1000–1017. doi:10.2174/138945010791591395
  • Lourenço SC, Moldão-Martins M, Alves VD. Antioxidants of natural plant origins: from sources to food industry applications. Molecules. 2019;24(22):4132, doi:10.3390/molecules24224132
  • Schempp CM, Kirkin V, Simon-Haarhaus B, et al. Inhibition of tumour cell growth by hyperforin, a novel anticancer drug from St. John’s wort that acts by induction of apoptosis. Oncogene. 2002;21(8):1242–1250. doi:10.1038/sj.onc.1205190
  • Menegazzi M, Masiello P, Novelli M. Anti-tumor activity of Hypericum perforatum L. and hyperforin through modulation of inflammatory signaling, ROS generation and proton dynamics. Antioxidants (Basel). 2020;10(1):18, doi:10.3390/antiox10010018
  • Zanoli P. Role of hyperforin in the pharmacological activities of St. John’s Wort. CNS Drug Rev. 2004;10(3):203–218. doi:10.1111/j.1527-3458.2004.tb00022
  • Donà M, Dell’Aica I, Pezzato E, et al. Hyperforin inhibits cancer invasion and metastasis. Cancer Res. 2004;64(17):6225–6232. doi:10.1158/0008-5472.CAN-04-0280
  • Zhu Y, Bu S. Curcumin induces autophagy, apoptosis, and cell cycle arrest in human pancreatic cancer cells. Evid Based Complement Alternat Med. 2017;2017:5787218, doi:10.1155/2017/5787218
  • Chiodi I, Belgiovine C, Donà F, et al. Drug treatment of cancer cell lines: a way to select for cancer stem cells? Cancers (Basel). 2011;3(1):1111–1128. doi:10.3390/cancers3011111
  • You MK, Kim HJ, Kook JH, et al. St. John’s wort regulates proliferation and apoptosis in MCF-7 human breast cancer cells by inhibiting AMPK/mTOR and activating the mitochondrial pathway. Int J Mol Sci. 2018;19(4):966, doi:10.3390/ijms19040966
  • Kim JH, Yoon EK, Chung HJ, et al. p53 acetylation enhances taxol-induced apoptosis in human cancer cells. Apoptosis. 2013;18(1):110–120. doi:10.1007/s10495-012-0772-8
  • Fallahian F, Aghaei M, Abdolmohammadi MH, et al. Molecular mechanism of apoptosis induction by Gaillardin, a sesquiterpene lactone, in breast cancer cell lines: Gaillardin-induced apoptosis in breast cancer cell lines. Cell Biol Toxicol. 2015;31(6):295–305. doi:10.1007/s10565-016-9312-6
  • Legrand C, Bour JM, Jacob C, et al. Lactate dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cells as marker. J Biotechnol. 1992;25(3):231–243. doi:10.1016/0168-1656(92)90158-6
  • Liu X, Yang Z, Chen Z, et al. Effects of the suppression of lactate dehydrogenase A on the growth and invasion of human gastric cancer cells. Oncol Rep. 2015;33(1):157–162. doi:10.3892/or.2014.3600
  • Augoff K, Hryniewicz-Jankowska A, Tabola R. Lactate dehydrogenase 5: an old friend and a new hope in the war on cancer. Cancer Lett. 2015;358(1):1–7. doi:10.1016/j.canlet.2014.12.035
  • Zaidieh T, Smith JR, Ball KE, et al. ROS as a novel indicator to predict anticancer drug efficacy. BMC Cancer. 2019;19(1):1224, doi:10.1186/s12885-019-6438-y
  • Aggarwal V, Tuli HS, Varol A, et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. 2019;9(11):735), doi:10.3390/biom9110735
  • Kim SJ, Kim HS, Seo YR. Understanding of ROS-inducing strategy in anticancer therapy. Oxid Med Cell Longev. 2019;2019:5381692, doi:10.1155/2019/5381692
  • Vultaggio-Poma V, Sarti AC, Di Virgilio F. Extracellular ATP: A feasible target for cancer therapy. Cells. 2020;9(11):2496, doi:10.3390/cells9112496
  • Menegazzi M, Masiello P, Novelli M. Anti-tumor activity of Hypericum perforatum L. and hyperforin through modulation of inflammatory signaling, ROS generation and proton dynamics. Antioxidants (Basel). 2021;10(1):18, doi:10.3390/antiox10010018
  • Abu Samaan TM, Samec M, Liskova A, et al. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules. 2019;9(12):789, doi:10.3390/biom9120789
  • Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25(18):2677–2681. doi:10.1091/mbc.e14-04-0916
  • Talib WH, Alsayed AR, Barakat M, et al. Targeting drug chemo-resistance in cancer using natural products. Biomedicines. 2021;9(10):1353), doi:10.3390/biomedicines9101353
  • Zhang JH, Xu M. DNA fragmentation in apoptosis. Cell Res. 2000;10(3):205–211. doi:10.1038/sj.cr.7290049
  • Xu XC. COX-2 inhibitors in cancer treatment and prevention, a recent development. Anticancer Drugs. 2002;13(2):127–137. doi:10.1097/00001813-200202000-00003
  • Cui J, Jia J. Natural COX-2 inhibitors as promising anti-inflammatory agents: an update. Curr Med Chem. 2021;28(18):3622–3646. doi:10.2174/0929867327999200917150939
  • Kim HJ, Yim GW, Nam EJ, et al. Synergistic effect of COX-2 inhibitor on paclitaxel-induced apoptosis in the human ovarian cancer cell line OVCAR-3. Cancer Res Treat. 2014;46(1):81–92. doi:10.4143/crt.2014.46.1.81
  • Gupta S, Kass GE, Szegezdi E, et al. The mitochondrial death pathway: a promising therapeutic target in diseases. J Cell Mol Med. 2009;13(6):1004–1033. doi:10.1111/j.1582-4934.2009.00697.x
  • Sprowl JA, Reed K, Armstrong SR, et al. Alterations in tumor necrosis factor signaling pathways are associated with cytotoxicity and resistance to taxanes: a study in isogenic resistant tumor cells. Breast Cancer Res. 2012;14(1):R2), doi:10.1186/bcr3083
  • Shen HM, Pervaiz S. TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB J. 2006;20(10):1589–1598. doi:10.1096/fj.05-5603rev
  • Zhou C, Lin A, Cao M, et al. Activation of the DDR pathway leads to the down-regulation of the TGFβ pathway and a better response to ICIs in patients with metastatic urothelial carcinoma. Front Immunol. 2021;12:634741), doi:10.3389/fimmu.2021.634741
  • Ko CH, Shen SC, Hsu CS, et al. Mitochondrial-dependent, reactive oxygen species-independent apoptosis by myricetin: roles of protein kinase C, cytochrome c, and caspase cascade. Biochem Pharmacol. 2005;69(6):913–927. doi:10.1016/j.bcp.2004.12.005
  • Nishimoto Y, Nakajima S, Tateya S, et al. Cell death-inducing DNA fragmentation factor A-like effector A and fat-specific protein 27β coordinately control lipid droplet size in brown adipocytes. J Biol Chem. 2017;292(26):10824–10834. doi:10.1074/jbc.M116.768820
  • Borges HL, Linden R, Wang JY. DNA damage-induced cell death: lessons from the central nervous system. Cell Res. 2008;18(1):17–26. doi:10.1038/cr.2007.110
  • Fleury C, Mignotte B, Vayssière J-L. Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002;84(2-3):131–141. doi:10.1016/S0300-9084(02)01369-X
  • Wang Y, Zhao YR, Zhang AY, et al. Targeting of miR-20a against CFLAR to potentiate TRAIL-induced apoptotic sensitivity in HepG2 cells. Eur Rev Med Pharmacol Sci. 2017;21(13):2980.
  • Yong KJ, Milenic DE, Baidoo KE, et al. Gene expression profiling upon 212Pb-TCMC-trastuzumab treatment in the LS-174T i.p. xenograft model. Cancer Med. 2013;2(5):646–653. doi:10.1002/cam4.132
  • Sevrioukova IF. Apoptosis-inducing factor: structure, function, and redox regulation. Antioxid Redox Signal. 2011;14(12):2545–2579. doi:10.1089/ars.2010.3445
  • Kariyil BJ, Ayyappan UPT, Gopalakrishnan A, et al. Chloroform fraction of methanolic extract of seeds of annona muricata induce S phase arrest and ROS dependent caspase activated mitochondria-mediated apoptosis in triple-negative breast cancer. Anticancer Agents Med Chem. 2021;21(10):1250–1265. doi:10.2174/1871520620666200918101448