1,430
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Geopolymer-stabilized soils: influencing factors, strength development mechanism and sustainability

, , , &
Article: 2248651 | Received 08 Apr 2023, Accepted 27 Jul 2023, Published online: 28 Aug 2023

References

  • Ikeagwuani CC, Nwonu DC. Emerging trends in expansive soil stabilisation: a review. J Rock Mech Geotech Eng. 2019;11(2):423–440. doi:10.1016/j.jrmge.2018.08.013
  • Tiwari N, Satyam N, Shukla SK. An experimental study on micro-structural and geotechnical characteristics of expansive clay mixed with EPS granules. Soils Found. 2020;60(3):705–713. doi:10.1016/j.sandf.2020.03.012
  • Zimar Z, Robert D, Sidiq A, et al. Waste-to-energy ash for treating highly expansive clays in road pavements. J Clean Prod. 2022;374:133854. doi:10.1016/j.jclepro.2022.133854
  • Phanikumar BR. Effect of lime and fly ash on swell, consolidation and shear strength characteristics of expansive clays: a comparative study. Geomech Geoeng Int J. 2009;4(2):175–181. doi:10.1080/17486020902856983
  • Rao MR, Rao AS, Babu DR. Efficacy of lime-stabilised fly ash in expansive soils. Proc Inst Civil Eng Ground Improv. 2008;161(1):23–29. doi:10.1680/grim.2008.161.1.23
  • Watanabe K, Nakajima S, Fujiwara T, et al. Construction and field measurement of high-speed railway test embankment built on Indian expansive soil “Black Cotton Soil”. Soils Found. 2021;61(1):218–238. doi:10.1016/j.sandf.2020.08.008
  • Rao AS, Phanikumar BR, Babu RD, et al. Pullout behavior of granular pile-anchors in expansive clay beds in situ. J Geotech Geoenviron Eng. 2007;133(5):531–538. doi:10.1061/(ASCE)1090-0241(2007)133:5(531)
  • Phanikumar BR, Nagaraju TV. Engineering behaviour of expansive clays blended with cement and GGBS. Proc Inst Civil Eng Ground Improv. 2018;171(3):167–173.
  • Jain A, Choudhary AK, Jha JN. Influence of rice husk ash on the swelling and strength characteristics of expansive soil. Geotech Geol Eng. 2020;38(2):2293–2302. doi:10.1007/s10706-019-01087-6
  • Lakkimsetti B, Nayak S. Experimental investigation and performance evaluation of lithomargic clay stabilized with granulated blast furnace slag and calcium chloride. Int J Geosyn Ground Eng. 2022;8(1):1–16. doi:10.1007/s40891-021-00345-z
  • Sivapullaiah PV, Sridharan A, Bhaskar Raju KV. Role of amount and type of clay in the lime stabilization of soils. Proc Inst Civil Eng Ground Improv. 2000;4(1):37–45. doi:10.1680/grim.2000.4.1.37
  • Bhuvaneshwari S, Robinson R, Gandhi S. Micro-fabric and mineralogical studies on the stabilization of an expansive soil using inorganic additives. Int J Geotech Eng. 2010;4(3):395–405. doi:10.3328/IJGE.2010.04.03.395-405
  • Mahasenan N, Smith S, Humphreys K. The cement industry and global climate change: current and potential future cement industry CO2 emissions. Greenhouse gas control technologies, 6th international conference; 2003, p. 995–1000. doi:10.1016/B978-008044276-1/50157-4
  • Sinha P, Iyer KK. Effect of stabilization on characteristics of subgrade soil: a review. Adv Comput Methods Geomech. 2020;55:667–682. doi:10.1007/978-981-15-0886-8_54
  • Miller SA, Monteiro PJ, Ostertag CP, et al. Comparison indices for design and proportioning of concrete mixtures taking environmental impacts into account. Cem Concr Compos. 2016;68:131–143. doi:10.1016/j.cemconcomp.2016.02.002
  • Nawaz M, Heitor A, Sivakumar M. Geopolymers in construction-recent developments. Constr Build Mater. 2020;260:120472. doi:10.1016/j.conbuildmat.2020.120472
  • Komnitsas KA. Potential of geopolymer technology towards green buildings and sustainable cities. Procedia Eng. 2011;21:1023–1032. doi:10.1016/j.proeng.2011.11.2108
  • Duxson P, Fernández-Jiménez A, Provis JL, et al. Geopolymer technology: the current state of the art. J Mater Sci. 2007;42(9):2917–2933. doi:10.1007/s10853-006-0637-z
  • Li L, Zhang X. A new triaxial testing system for unsaturated soil characterization. Geotech Test J. 2015;38(6):823–839.
  • Sharma LK, Singh TN. Regression-based models for the prediction of unconfined compressive strength of artificially structured soil. Eng Comp. 2018;34(1):175–186. doi:10.1007/s00366-017-0528-8
  • Alzabeebee S, Alshkane YM, Rashed KA. Evolutionary computing of the compression index of fine-grained soils. Arab J Geosci. 2021;14(19):1–17.
  • Yin ZY, Jin YF, Liu ZQ. Practice of artificial intelligence in geotechnical engineering. J Zhejiang Univer Sci A. 2020;21(6):407–411. doi:10.1631/jzus.A20AIGE1
  • Soleimani S, Rajaei S, Jiao P, et al. New prediction models for unconfined compressive strength of geopolymer stabilized soil using multi-gen genetic programming. Measurement. 2018;113:99–107.
  • Mozumder RA, Laskar AI, Hussain M. Empirical approach for strength prediction of geopolymer stabilized clayey soil using support vector machines. Constr Build Mater. 2017;132:412–424. doi:10.1016/j.conbuildmat.2016.12.012
  • Davidovits J. Geopolymers and geopolymeric materials. J Ther Anal. 1989;35(2):429–441. doi:10.1007/BF01904446
  • Ricciotti L, Occhicone A, Ferone C, et al. Development of geopolymer-based materials with ceramic waste for artistic and restoration applications. Materials. 2022;15(23):8600. doi:10.3390/ma15238600
  • Provis JL, Van Deventer JSJ. Geopolymers: structures, processing, properties and industrial applications. New York: CRC Press; 2009.
  • Kumar S, Kumar R. Mechanical activation of fly ash: effect on reaction, structure and properties of resulting geopolymer. Ceram Int. 2011;37(2):533–541. doi:10.1016/j.ceramint.2010.09.038
  • Khale D, Chaudhary R. Mechanism of geopolymerization and factors influencing its development: a review. J Mater Sci. 2007;42(3):729–746. doi:10.1007/s10853-006-0401-4
  • Morsy MS, Alsayed SH, Al-Salloum Y, et al. Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder. Arab J Sci Eng. 2014;39(6):4333–4339. doi:10.1007/s13369-014-1093-8
  • Matsuoka M, Yokoyama K, Okura K, et al. Synthesis of geopolymers from mechanically activated coal fly ash and improvement of their mechanical properties. Minerals. 2019;9(12):791. doi:10.3390/min9120791
  • Kamseu E, Kaze CR, Fekoua JNN, et al. Ferrisilicates formation during the geopolymerization of natural Fe-rich aluminosilicate precursors. Mat Chem Phys. 2020;240:122062. doi:10.1016/j.matchemphys.2019.122062
  • Lei J, Law WW, Yang EH. Effect of calcium hydroxide on the alkali-silica reaction of alkali-activated slag mortars activated by sodium hydroxide. Constr Build Mater. 2021;272:121868. doi:10.1016/j.conbuildmat.2020.121868
  • Provis JL, Bernal SA. Binder chemistry–blended systems and intermediate Ca content. In: Provis J, van Deventer J, editors. Provis, J., van Deventer, J. (eds) Alkali activated materials. RILEM State-of-the-Art Reports, Dordrecht: Springer; 2014. p. 125–144.
  • Vafaei M, Allahverdi A. High strength geopolymer binder based on waste-glass powder. Adv Powd Technol. 2017;28(1):215–222. doi:10.1016/j.apt.2016.09.034
  • Ibrahim M, Johari MAM, Maslehuddin M, et al. Influence of nano-SiO2 on the strength and microstructure of natural pozzolan based alkali activated concrete. Constr Build Mater. 2018;173:573–585. doi:10.1016/j.conbuildmat.2018.04.051
  • Shehata N, Sayed ET, Abdelkareem MA. Recent progress in environmentally friendly geopolymers: a review. Sci Total Environ. 2021;762:143166. doi:10.1016/j.scitotenv.2020.143166
  • Ghadir P, Razeghi HR. Effects of sodium chloride on the mechanical strength of alkali activated volcanic ash and slag pastes under room and elevated temperatures. Const Build Mater. 2022;344:128113. doi:10.1016/j.conbuildmat.2022.128113
  • Shariatmadari N, Hasanzadehshooiili H, Ghadir P, et al. Compressive strength of sandy soils stabilized with alkali-activated volcanic ash and slag. J Mater Civ Eng. 2021;33(11):04021295. doi:10.1061/(ASCE)MT.1943-5533.0003845
  • Razeghi HR, Ghadir P, Javadi AA. Mechanical strength of saline sandy soils stabilized with alkali-activated cements. Sustainability. 2022;14(20):13669. doi:10.3390/su142013669
  • Samadi P, Ghodrati A, Ghadir P, et al. Effect of seawater on the mechanical strength of geopolymer/cement stabilized sandy soils. Proceedings of the TMIC 2022 Slope Stability Conference (TMIC 2022); 2023; vol. 13, p. 121–129. doi:10.2991/978-94-6463-104-3_12
  • Zhao J, Tong L, Li B, et al. Eco-friendly geopolymer materials: a review of performance improvement, potential application and sustainability assessment. J Clean Prod. 2021;307:127085. doi:10.1016/j.jclepro.2021.127085
  • Hardjito D, Wallah SE, Sumajouw DM, et al. Fly ash-based geopolymer concrete. Aust J Struct Eng. 2005;6(1):77–86. doi:10.1080/13287982.2005.11464946
  • Parthiban D, Vijayan DS, Koda E, et al. Role of industrial based precursors in the stabilization of weak soils with geopolymer – a review. Case Stud Constr Mater. 2022;16:e00886.
  • Mozumder RA, Laskar AI. Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using artificial neural network. Comput Geotech. 2015;69:291–300. doi:10.1016/j.compgeo.2015.05.021
  • Mahmoodzadeh A, Mohammadi M, Ibrahim HH, et al. Artificial intelligence forecasting models of uniaxial compressive strength. Transp Geotech. 2021;27:100499. doi:10.1016/j.trgeo.2020.100499
  • Zhang G, Ding Z, Wang Y, et al. Performance prediction of cement stabilized soil incorporating solid waste and propylene fiber. Materials. 2022;15(12):4250.
  • Nagaraju TV, Mantena S, Azab M, et al. Prediction of high strength ternary blended concrete containing different silica proportions using machine learning approaches. Results Eng. 2023;17:100973.
  • Hamed A, Sobhy A, Nassar H. Accurate classification of COVID-19 based on incomplete heterogeneous data using a KNN variant algorithm. Arab J Sci Eng. 2021;46(9):8261–8272. doi:10.1007/s13369-020-05212-z
  • Ghadir P, Ranjbar N. Clayey soil stabilization using geopolymer and portland cement. Constr Build Mater. 2018;188:361–371. doi:10.1016/j.conbuildmat.2018.07.207
  • Wu D, Zhang Z, Chen K, et al. Experimental investigation and mechanism of fly ash/slag-based geopolymer-stabilized soft soil. Appl Sci. 2022;12(15):7438. doi:10.3390/app12157438
  • Chindaprasirt P, De Silva P, Sagoe-Crentsil K, et al. Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. J Mater Sci. 2012;47(12):4876–4883. doi:10.1007/s10853-012-6353-y
  • Onyejekwe S, Ghataora GS. Soil stabilization using proprietary liquid chemical stabilizers: sulphonated oil and a polymer. Bull Eng Geol Environ. 2015;74:651–665. doi:10.1007/s10064-014-0667-8
  • Gupta A, Arora VK, Biswas S. Contaminated dredged soil stabilization using cement and bottom ash for use as highway subgrade fill. Int J Geo-Eng. 2017;8:1–13.
  • Abdila SR, Abdullah MMAB, Ahmad R, et al. Evaluation on the mechanical properties of ground granulated blast slag (GGBS) and fly ash stabilized soil via geopolymer process. Materials. 2021;14(11):2833.
  • Abdullah HH, Shahin MA, Walske ML. Geo-mechanical behavior of clay soils stabilized at ambient temperature with fly-ash geopolymer-incorporated granulated slag. Soils Found. 2019;59(6):1906–1920. doi:10.1016/j.sandf.2019.08.005
  • Abbas IS, Abed MH, Canakci H. Development and characterization of eco-and user-friendly grout production via mechanochemical activation of slag/rice husk ash geopolymer. J Build Eng. 2023;63:105336. doi:10.1016/j.jobe.2022.105336
  • Alsalman A, Assi LN, Kareem RS, et al. Energy and CO2 emission assessments of alkali-activated concrete and ordinary Portland cement concrete: a comparative analysis of different grades of concrete. Clean Environ Syst. 2021;3:100047. doi:10.1016/j.cesys.2021.100047
  • Barbosa VF, MacKenzie KJ. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater Res Bull. 2003;38(2):319–331. doi:10.1016/S0025-5408(02)01022-X
  • Pacheco-Torgal F, Abdollahnejad Z, Miraldo S, et al. An overview on the potential of geopolymers for concrete infrastructure rehabilitation. Constr Build Mater. 2012;36:1053–1058. doi:10.1016/j.conbuildmat.2012.07.003
  • Soni U, Roy A, Verma A, et al. Forecasting municipal solid waste generation using artificial intelligence models—a case study in India. SN Appl Sci. 2019;1(2):1–10. doi:10.1007/s42452-018-0157-x
  • Hair JF, Risher JJ, Sarstedt M, et al. When to use and how to report the results of PLS-SEM. Eur Bus Rev. 2019;31(1):2–24. doi:10.1108/EBR-11-2018-0203
  • Feby B, Achu AL, Jimnisha K, et al. Landslide susceptibility modelling using integrated evidential belief function based logistic regression method: A study from Southern Western Ghats, India. Remote Sens Appl Soc Environ. 2020;20:100411.