980
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Propolis nanoparticles synthesis and characterization with cytotoxic and apoptotic effects on breast cancer cells

, , , ORCID Icon, &
Article: 2249628 | Received 14 Feb 2023, Accepted 15 Aug 2023, Published online: 30 Aug 2023

References

  • Tobore TO. On the need for the development of a cancer early detection, diagnostic, prognosis, and treatment response system. Future Sci OA [Internet]. 2020 [cited 2023 Apr 6];6, Available from: /pmc/articles/PMC6997916/.
  • Senapati S, Mahanta AK, Kumar S, et al. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction Targeted Ther [Internet]. 2018 [cited 2023 Apr 7];3:1–19. doi:10.1038/s41392-017-0004-3
  • Danışman-Kalındemirtaş F, Kariper İA, Erdemir G, et al. Evaluation of anticancer effects of carboplatin–gelatin nanoparticles in different sizes synthesized with newly self-assembly method by exposure to IR light. Sci Rep [Internet]. 2022 [cited 2023 Apr 7];12:1–11 Available from: https://www.nature.com/articles/s41598-022-15051-7.
  • González M, Guzmán B, Rudyk R, et al. Spectrophotometric determination of phenolic compounds in propolis. Acta Farmaceutica Bonaerense. 2003; 22(3):243–248..
  • Burdock GA. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol. 1998;36:347–363. doi:10.1016/S0278-6915(97)00145-2
  • Banskota AH, Tezuka Y, Kadota S. Recent progress in pharmacological research of propolis. Phytother Res. 2001: 561–571. doi:10.1002/ptr.1029
  • Valenzuela-Barra G, Castro C, Figueroa C, et al. Anti-inflammatory activity and phenolic profile of propolis from two locations in Región Metropolitana de Santiago, Chile. J Ethnopharmacol. 2015;168:37–44. doi:10.1016/j.jep.2015.03.050
  • Hamdi D, Wijanarko A, Hermansyah H, et al. Production of nanopropolis using high pressure ball mill homogenizer. IOP Conference Series: Earth and Environmental Science; 2019; Institute of Physics Publishing. p. 012014.
  • Chiao C, Carothers AM, Grunberger D, et al. Apoptosis and altered redox state induced by caffeic acid phenethyl ester (CAPE) in transformed rat fibroblast cells. Cancer Res. PubMed [Internet]. [cited 2021 Apr 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/7543016/.
  • Su ZZ, Lin J, Grunberger D, et al. Growth suppression and toxicity induced by caffeic acid phenethyl ester (CAPE) in type 5 adenovirus-transformed rat embryo cells correlate directly with transformation progression. Cancer Res. PubMed [Internet]. [cited 2021 Apr 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/7511055/.
  • Frenkel K, Wei H, Bhimani R, et al. Inhibition of tumor promoter-mediated processes in mouse skin and bovine lens by caffeic acid phenethyl ester. Cancer Res. PubMed [Internet]. [cited 2021 Apr 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/7680281/.
  • Sung HC, Chang KS, Chen ST, et al. Metallothionein 2A with antioxidant and antitumor activity is upregulated by caffeic acid phenethyl ester in human bladder carcinoma cells. Antioxidants (Basel) [Internet]. 2022 [cited 2023 Apr 12];11, Available from: https://pubmed.ncbi.nlm.nih.gov/36009228/.
  • Krystyna F, Huachen W, Ramesh B, et al. Inhibition of tumor promoter-mediated processes in mouse skin and bovine lens by caffeic acid phenethyl ester. Cancer Res. 1993 [cited 2023 Apr 13];53:1255–1261. Available from: https://aacrjournals.org/cancerres/article/53/6/1255/499995/Inhibition-of-Tumor-Promoter-mediated-Processes-in.
  • Chen YJ, Shiao MS, Hsu ML, et al. Effect of caffeic acid phenethyl ester, an antioxidant from propolis, on inducing apoptosis in human leukemic HL-60 cells. J Agric Food Chem. 2001;49:5615–5619. doi:10.1021/jf0107252
  • Rao CV, Desai D, Simi B, et al. Inhibitory effect of caffeic acid esters on azoxymethane-induced biochemical changes and aberrant crypt foci formation in rat colon. Cancer Res, PubMed [Internet]. [cited 2021 Apr 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/8364913/.
  • Sud’ina GF, Mirzoeva OK, Pushkareva MA, et al. Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. European Biochemical Societies. 1993;329 (1-2):21–24.
  • Poole RC, Bowden NJ, Halestrap AP. Derivatives of cinnamic acid interact with the nucleotide binding site of mitochondrial aldehyde dehydrogenase. Biochem Pharmacol. 1993;45:1621–1630. doi:10.1016/0006-2952(93)90303-E
  • Woo KJ, Jeong YJ, Inoue H, et al. Chrysin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression through the inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity. FEBS Lett. 2005;579:705–711. doi:10.1016/j.febslet.2004.12.048
  • Cuenca AG, Jiang H, Hochwald SN, et al. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer [Internet]. 2006 [cited 2022 Sep 28];107:459–466. Available from: https://pubmed.ncbi.nlm.nih.gov/16795065/.
  • Nakamura Y, Mochida A, Choyke PL, et al. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem [Internet]. 2016 [cited 2022 Sep 28];27:2225–2238. Available from: https://pubmed.ncbi.nlm.nih.gov/27547843/.
  • Ma P, Mumper RJ. Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol [Internet]. 2013 [cited 2022 May 12];4:1000164, Available from: /pmc/articles/PMC3806207/.
  • Sikora P, Cendrowski K, Horszczaruk E, et al. The effects of Fe3O4 and Fe3O4/SiO2 nanoparticles on the mechanical properties of cement mortars exposed to elevated temperatures. Constr Build Mater. 2018;182:441–450. doi:10.1016/j.conbuildmat.2018.06.133
  • Xu G, Wang XL, Liu GZ. Facile solvothermal synthesis of abnormal growth of one-dimensional ZnO nanostructures by ring-opening reaction of polyvinylpyrrolidone. Appl Surf Sci. 2015;329:137–142. doi:10.1016/j.apsusc.2014.12.117
  • Tunesi MM, Kalwar NH, Soomro RA, et al. Tartaric acid assisted in-situ growth of CuO nanostructures over ITO substrate for the electrocatalytic detection of Sudan I. Mater Sci Semicond Process. 2018;75:296–300. doi:10.1016/j.mssp.2017.12.001
  • Pehlivan AO, Karakuş S, Karapınar IS, et al. Effect of novel synthesized nanoeggshell on the properties of cementitious composites. J Adv Concr Technol. 2020;18:294–306. doi:10.3151/jact.18.294
  • Kim DM, Lee GD, Aum SH, et al. Preparation of propolis nanofood and application to human cancer. Biol Pharm Bull. 2008;31:1704–1710. doi:10.1248/bpb.31.1704
  • Elbaz NM, Khalil IA, Abd-Rabou AA, et al. Chitosan-based nano-in-microparticle carriers for enhanced oral delivery and anticancer activity of propolis. Int J Biol Macromol. 2016;92:254–269. doi:10.1016/j.ijbiomac.2016.07.024
  • Serda M, Becker FG, Cleary M, et al. Encapsulation of Indonesian propolis by Casein micelle. G. Balint, Antala B, Carty C, et al., editors. Int J Pharma Bio Sci [Internet]. 2013 [cited 2022 Sep 28];4:297–305. Available from: https://scholar.ui.ac.id/en/publications/encapsulation-of-indonesian-propolis-by-casein-micelle.
  • Ilhan-Ayisigi E, Ulucan F, Saygili E, et al. Nano-vesicular formulation of propolis and cytotoxic effects in a 3D spheroid model of lung cancer. J Sci Food Agric [Internet]. 2020;100:3525–3535. Available from: https://pubmed.ncbi.nlm.nih.gov/32239766/.
  • Elkhateeb OM, Badawy MEI, Noreldin AE, et al. Comparative evaluation of propolis nanostructured lipid carriers and its crude extract for antioxidants, antimicrobial activity, and skin regeneration potential. BMC Complement Med Ther [Internet]. 2022 [cited 2023 Apr 17];22, Available from: https://pubmed.ncbi.nlm.nih.gov/36192714/.
  • Cui J, Duan X, Ke L, et al. Extraction, purification, structural character and biological properties of propolis flavonoids: a review. Fitoterapia. 2022;157:105106. doi:10.1016/j.fitote.2021.105106
  • Roehm NW, Rodgers GH, Hatfield SM, et al. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods [Internet]. 1991 [cited 2023 Apr 7];142:257–265. Available from: https://pubmed.ncbi.nlm.nih.gov/1919029/.
  • Kalındemirtaş FD, Kaya B, Sert E, et al. New oxovanadium(IV) complexes overcame drug resistance and increased in vitro cytotoxicity by an apoptotic pathway in breast cancer cells. Chem Biol Interact [Internet]. 2022 [cited 2023 Apr 7];363, Available from: https://pubmed.ncbi.nlm.nih.gov/35654126/.
  • Nunez R. Dna measurement and cell cycle analysis by flow cytometry. Curr Issues Mol Biol [Internet]. 2001 [cited 2023 Apr 8];3:67–70. Available from: https://www.mdpi.com/1467-3045/3/3/10.
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics [Internet]. 2018 [cited 2023 Apr 18];10, Available from: /pmc/articles/PMC6027495/.
  • Khan DH, Bashir S, Khan MI, et al. Formulation optimization and in vitro characterization of rifampicin and ceftriaxone dual drug loaded niosomes with high energy probe sonication technique. J Drug Deliv Sci Technol. 2020;58:101763. doi:10.1016/j.jddst.2020.101763
  • Franca JR, Luca D, Ribeiro MP, et al. Propolis - based chitosan varnish: drug delivery, controlled release and antimicrobial activity against oral pathogen bacteria. BMC Complement Altern Med. 2014;14:478. doi:10.1186/1472-6882-14-478
  • Amalia E, Diantini A, Subarnas A. Water-soluble propolis and bee pollen of Trigona spp. from South Sulawesi Indonesia induce apoptosis in the human breast cancer MCF-7 cell line. Oncol Lett [Internet]. 2020 [cited 2022 Sep 21];20, Available from: https://pubmed.ncbi.nlm.nih.gov/33014153/.
  • Hugo Melo de Lima V, de Cassia Rodrigues Almeida K, Cristina Fernandes Alves C, et al. Biological properties of volatile oil from Brazilian brown propolis. Revista Brasileira de Farmacognosia [Internet]. 2019 [cited 2022 Sep 21];29:807–810. doi:10.1016/j.bjp.2019.07.004
  • Motomura M, Kwon KM, Suh SJ, et al. Propolis induces cell cycle arrest and apoptosis in human leukemic U937 cells through Bcl-2/Bax regulation. Environ Toxicol Pharmacol [Internet]. 2008 [cited 2022 Sep 28];26:61–67. Available from: https://pubmed.ncbi.nlm.nih.gov/21783889/.
  • do Nascimento TG, da Silva PF, Azevedo LF, et al. Polymeric nanoparticles of Brazilian red propolis extract: preparation, characterization, antioxidant and leishmanicidal activity. Nanoscale Res Lett. 2016;11:1–16.
  • Misir S, Aliyazicioglu Y, Demir S, et al. Effect of Turkish propolis on miRNA expression, cell cycle, and apoptosis in human breast cancer (MCF-7) cells. Nutrition and Cancer [Internet]. 2019 [cited 2022 Oct 5];72:133–145.
  • Friõn-Herrera Y, Díaz-García A, Ruiz-Fuentes J, et al. Brazilian green propolis induced apoptosis in human lung cancer A549 cells through mitochondrial-mediated pathway. J Pharm Pharmacol [Internet]. 2015 [cited 2023 Apr 19];67:1448–1456. Available from: https://pubmed.ncbi.nlm.nih.gov/26206395/.
  • Ghazi AM, Al-Bayati MA. Anti-proliferative of the phytosome propolis, phytosome lycopene and synergistic effect on the benign prostatic hyperplasia cells in-vitro. Plant Arch. 2020;20:6579–6589.
  • Jayanthi B, Jayanthi Anti B. Anti cancer activity of silver nano particles bio-synthesized using stingless bee propolis (Tetragonula iridipennis) of Tamilnadu. S Kothai and B Jayanthi: Asian J Biomed Pharm Sci. 2014;2014:40.
  • Abogharip MK, Elgayar KE, Abbas MS, et al. Some chemical studies on cytotoxicity of antioxidants from propolis extracts against human pancreatic PANC-1 cancer cell line. Egypt J Chem [Internet]. 2023 [cited 2023 Apr 24];0:0–0. Available from: https://ejchem.journals.ekb.eg/article_287784.html.
  • Seven PT, Seven I, Karakus S, et al. Turkish Propolis and Its Nano Form Can Ameliorate the Side Effects of Cisplatin, Which Is a Widely Used Drug in the Treatment of Cancer. Plants [Internet]. 2020 [cited 2022 Oct 4];9:1–22. Available from: /pmc/articles/PMC7570054/.
  • Ong TH, Chitra E, Ramamurthy S, et al. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms. PLoS One. 2017;12:e0174888.
  • Jan R, Chaudhry GS. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Adv Pharm Bull [Internet]. 2019 [cited 2022 Oct 2];9:205–218. Available from: https://pubmed.ncbi.nlm.nih.gov/31380246/.
  • Seda Vatansever H, Sorkun K, Ismet Deliloĝlu Gurhan S, et al. Propolis from Turkey induces apoptosis through activating caspases in human breast carcinoma cell lines. Acta Histochem. 2010;112:546–556. doi:10.1016/j.acthis.2009.06.001
  • Luo J, Soh JW, Xing WQ, et al. PM-3, a benzo-gamma-pyran derivative isolated from propolis, inhibits growth of MCF-7 human breast cancer cells. Anticancer Res [Internet]. 2001 [cited 2022 Oct 5];21:1665–1671. Available from: https://europepmc.org/article/med/11497245/reload=0.
  • Zhang H, Xu HL, Wang YC, et al. 20(S)-Protopanaxadiol-Induced apoptosis in MCF-7 breast cancer cell line through the inhibition of PI3K/AKT/mTOR signaling pathway. Int J Mol Sci [Internet]. 2018 [cited 2023 Apr 10];19:1053, doi:10.3390/ijms19041053
  • Ventura E, Giordano A. Cell Cycle. Reference Module in Life Sciences [Internet]. 2019 [cited 2023 Apr 10]; Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128096338901894.
  • Pietenpol JA, Stewart ZA. Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology. 2002;181–182:475–481.
  • Kennedy SG, Wagner AJ, Conzen SD, et al. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev [Internet]. 1997 [cited 2022 Oct 5];11:701–713. Available from: https://pubmed.ncbi.nlm.nih.gov/9087425/.
  • Fani S, Dehghan F, Karimian H, et al. Monobenzyltin complex C1 induces apoptosis in MCF-7 breast cancer cells through the intrinsic signaling pathway and through the targeting of MCF-7-derived breast cancer stem cells via the Wnt/β-catenin signaling pathway. PLoS One [Internet]. 2016 [cited 2022 Oct 5];11:e0160836, Available from: https://journals.plos.org/plosone/article?id=10.1371journal.pone.0160836.
  • Pietenpol JA, Stewart ZA. Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology [Internet]. 2002 [cited 2022 Sep 27];181–182:475–481. Available from: https://pubmed.ncbi.nlm.nih.gov/12505356/.
  • Hartwell LH, Weinert TA. Checkpoints: controls that ensure the order of cell cycle events. Science [Internet]. 1989 [cited 2022 Sep 28];246:629–634. Available from: https://pubmed.ncbi.nlm.nih.gov/2683079/.