473
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Diversified role of fuzzified particle concentration on Casson gold-blood nanofluid flow through an elongating sheet for different shape nanoparticles

, , ORCID Icon, &
Article: 2254465 | Received 17 Jun 2023, Accepted 29 Aug 2023, Published online: 04 Sep 2023

References

  • Zadeh LA. Fuzzy sets. Infor Control. 1965;8(3):338–353. doi:10.1016/S0019-9958(65)90241-X
  • Dubois D, Prade H. Operations on fuzzy numbers. Int J Sys Sci. 1978;9(6):613–626. doi:10.1080/00207727808941724
  • Seikkala S. On the fuzzy initial value problem. Fuzzy Sets Sys. 1987;24(3):319–330. doi:10.1016/0165-0114(87)90030-3
  • Kaleva O. Fuzzy differential equations. Fuzzy Sets Sys. 1987;24(3):301–317. doi:10.1016/0165-0114(87)90029-7
  • Buckley JJ, Feuring T, Hayashi Y. Linear systems of first order ordinary differential equations: fuzzy initial conditions. Soft Comput. 2002;6:415–421. doi:10.1007/s005000100155
  • Nieto JJ. The Cauchy problem for continuous fuzzy differential equations. Fuzzy Sets Sys. 1999;102(2):259–262. doi:10.1016/S0165-0114(97)00094-8
  • Lakshmikantham V, Mohapatra RN. Basic properties of solutions of fuzzy differential equations. Nonlin Stud. 2001;8(1):113–124.
  • Park JY, Han HK. Existence and uniqueness theorem for a solution of fuzzy differential equations. Int J Math Math Sci. 1999;22:271–279. doi:10.1155/S0161171299222715
  • Gasilov NA, Fatullayev AG, Amrahov ŞE. Solution method for a non-homogeneous fuzzy linear system of differential equations. Appl Soft Comput. 2018;70:225–237. doi:10.1016/j.asoc.2018.05.010
  • Joshi BP, Kumar S. Intuitionistic fuzzy sets based method for fuzzy time series forecasting. Cybern Sys. 2012;43(1):34–47. doi:10.1080/01969722.2012.637014
  • Joshi BP, Kumar S. A computational method for fuzzy time series forecasting based on difference parameters. Int J Model Simul Sci Comput. 2013;04(01):1250023. doi:10.1142/S1793962312500237
  • Joshi BP, Kumar A, Singh A, et al. Intuitionistic fuzzy parameterized fuzzy soft set theory and its application. J Intell Fuzzy Sys. 2018;35(5):5217–5223. doi:10.3233/JIFS-169805
  • Azimi M, Mozaffari A. Heat transfer analysis of unsteady graphene oxide nanofluid flow using a fuzzy identifier evolved by genetically encoded mutable smart bee algorithm. Eng Sci Technol, Int J. 2015;18(1):106–123.
  • Siddique I, Zulqarnain RM, Nadeem M, et al. Numerical simulation of MHD Couette flow of a fuzzy nanofluid through an inclined channel with thermal radiation effect. Comput Intell Neurosci. 2021;2021:1–16. doi:10.1155/2021/6608684
  • Nadeem M, Elmoasry A, Siddique I, et al. Study of triangular fuzzy hybrid nanofluids on the natural convection flow and heat transfer between two vertical plates. Comput Intell Neurosci. 2021. doi:10.1155/2021/3678335
  • Nadeem M, Siddique I, Awrejcewicz J, et al. Numerical analysis of a second-grade fuzzy hybrid nanofluid flow and heat transfer over a permeable stretching/shrinking sheet. Sci Rep. 2022;12(1):1631. doi:10.1038/s41598-022-05393-7
  • Siddique I, Khan Y, Nadeem M, et al. Significance of heat transfer for second-grade fuzzy hybrid nanofluid flow over a stretching/shrinking Riga wedge. AIMS Math. 2023;8(1):295–316. doi:10.3934/math.2023014
  • Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publications Fed. 1995;231:99–106.
  • Sekhar YR, Sharma KV, Karupparaj RT, et al. Heat transfer enhancement with Al2O3 nanofluids and twisted tapes in a pipe for solar thermal applications. Proc Eng. 2013;64:1474–1484. doi:10.1016/j.proeng.2013.09.229
  • Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotech. 2004;2(1):1–6. doi:10.1186/1477-3155-2-3
  • Duangthongsuk W, Wongwises S. Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf. 2009;52(7-8):2059–2067. doi:10.1016/j.ijheatmasstransfer.2008.10.023
  • Saidur R, Leong KY, Mohammed HA. A review on applications and challenges of nanofluids. Ren Sust Energy Rev. 2011;15(3):1646–1668. doi:10.1016/j.rser.2010.11.035
  • Jajja SA, Ali W, Ali HM. Multiwalled carbon nanotube nanofluid for thermal management of high heat generating computer processor. Heat Transf. 2014;43(7):653–666.
  • Hussain F, Nazeer M, Altanji M, et al. Thermal analysis of Casson rheological fluid with gold nanoparticles under the impact of gravitational and magnetic forces. Case Stud Therm Eng. 2021;28:101433. doi:10.1016/j.csite.2021.101433
  • Nazeer M, Ramesh K, Farooq H, et al. Impact of gold and silver nanoparticles in highly viscous flows with different body forces. Int J Model Simul. 2023;43(4):376–392. doi:10.1080/02286203.2022.2084217
  • Choudhari R, Vaidya H, Prasad KV, et al. Electroosmosis augmented MHD third-grade fluid with slip and variable properties: an application for blood flow in arteries. J Comput Biophys Chem. 2023;22(03):243–258. doi:10.1142/S273741652340001X
  • Irfan M, Nazeer M, Hussain F, et al. Heat transfer analysis in the peristaltic flow of Casson nanofluid through asymmetric channel with velocity and thermal slips: applications in a complex system. Int J Mod Phys B. 2022;36(32):2250231. doi:10.1142/S0217979222502319
  • Khan AA, Arshad A, Ellahi R, et al. Heat transmission in Darcy–Forchheimer flow of Sutterby nanofluid containing gyrotactic microorganisms. Int J Numer Methods Heat Fluid Flow. 2023;33(1):135–152. doi:10.1108/HFF-03-2022-0194
  • Ellahi R, Zeeshan A, Waheed A, et al. Natural convection nanofluid flow with heat transfer analysis of carbon nanotubes–water nanofluid inside a vertical truncated wavy cone. Math Methods Appl Sci. 2023;46(10):11303–11321. doi:10.1002/mma.7281
  • Alamri SZ, Ellahi R, Shehzad N, et al. Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: an application of Stefan blowing. J Molec Liq. 2019;273:292–304. doi:10.1016/j.molliq.2018.10.038
  • Umar M, Sabir Z, Imran A, et al. The 3-D flow of Casson nanofluid over a stretched sheet with chemical reactions, velocity slip, thermal radiation and Brownian motion. Therm Sci. 2020;24:2929–2939. doi:10.2298/TSCI190625339U
  • Sabir Z, Akhtar R, Zhiyu Z, et al. A computational analysis of two-phase Casson nanofluid passing a stretching sheet using chemical reactions and gyrotactic microorganisms. Math Prob Eng. 2019;2019:1–12. doi:10.1155/2019/1490571
  • Umar M, Akhtar R, Sabir Z, et al. Numerical treatment for the three-dimensional Eyring–Powell fluid flow over a stretching sheet with velocity slip and activation energy. Adv Math Phys. 2019;2019:1–12. doi:10.1155/2019/9860471
  • Pandey AK, Upreti H, Joshi N, et al. Effect of natural convection on 3D MHD flow of MoS2–GO/H2O via porous surface due to multiple slip mechanisms. J Taibah Univ Sci. 2022;16(1):749–762. doi:10.1080/16583655.2022.2113729
  • Omri M, Bouterra M, Ouri H, et al. Entropy generation of nanofluid flow in hexagonal microchannel. J Taibah Univ Sci. 2022;16(1):75–88. doi:10.1080/16583655.2022.2031567
  • Patil PM, Goudar B, Sheremet MA. Tangent hyperbolic ternary hybrid nanofluid flow over a rough-yawed cylinder due to impulsive motion. J Taibah Univ Sci. 2023;17(1):2199664. doi:10.1080/16583655.2023.2199664
  • Jeong J, Li C, Kwon Y, et al. Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. Int J Refrig. 2013;36(8):2233–2241. doi:10.1016/j.ijrefrig.2013.07.024
  • Elias MM, Miqdad M, Mahbubul IM, et al. Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger. Int Commun Heat Mass Transf. 2013;44:93–99. doi:10.1016/j.icheatmasstransfer.2013.03.014
  • Ellahi R, Hassan M, Zeeshan A. Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. Int J Heat Mass Transf. 2015;81:449–456. doi:10.1016/j.ijheatmasstransfer.2014.10.041
  • Ghadikolaei SS, Yassari M, Sadeghi H, et al. Investigation on thermophysical properties of TiO2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol. 2017;322:428–438. doi:10.1016/j.powtec.2017.09.006
  • Iqbal Z, Maraj EN, Azhar E, et al. A novel development of hybrid (MoS2− SiO2/H2O) nanofluidic curvilinear transport and consequences for effectiveness of shape factors. J Taiwan Inst Chem Eng. 2017;81:150–158. doi:10.1016/j.jtice.2017.09.037
  • Ramesh GK. Influence of shape factor on hybrid nanomaterial in a cross-flow direction with viscous dissipation. Phys Scrip. 2019;94(10):105224. doi:10.1088/1402-4896/ab320a
  • Vanaki SM, Mohammed HA, Abdollahi A, et al. Effect of nanoparticle shapes on the heat transfer enhancement in a wavy channel with different phase shifts. J Molec Liq. 2014;196:32–42. doi:10.1016/j.molliq.2014.03.001
  • Maraj EN, Iqbal Z, Azhar E, et al. A comprehensive shape factor analysis using transportation of MoS2-SiO2/H2O inside an isothermal semi vertical inverted cone with porous boundary. Res Phys. 2018;8:633–641.
  • Akbar NS, Iqbal Z, Ahmad B, et al. Mechanistic investigation for shape factor analysis of SiO2/MoS2–ethylene glycol inside a vertical channel influenced by oscillatory temperature gradient. Canadian J Phys. 2019;97(9):950–958. doi:10.1139/cjp-2018-0717
  • Benkhedda M, Boufendi T, Tayebi T, et al. Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect. J Therm Anal Calorim. 2020;140:411–425. doi:10.1007/s10973-019-08836-y
  • Hosseinzadeh K, Roghani S, Asadi A, et al. Investigation of micropolar hybrid ferrofluid flow over a vertical plate by considering various base fluid and nanoparticle shape factor. Int J Numer Methods Heat Fluid Flow. 2020;31(1):402–417. doi:10.1108/HFF-02-2020-0095
  • Zahmatkesh I, Sheremet M, Yang L, et al. Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: a critical review. J Mol Liq. 2021;321:114430. doi:10.1016/j.molliq.2020.114430
  • Upreti H, Bartwal P, Pandey AK, et al. Heat transfer assessment for Au-blood nanofluid flow in Darcy–Forchheimer porous medium using induced magnetic field and Cattaneo–Christov model. Numer Heat Transf, Part B Fund. 2023. doi:10.1080/10407790.2023.2209281
  • Straughan B. Thermal convection with the Cattaneo–Christov model. Int J Heat Mass Transf. 2010;53(1–3):95–98. doi:10.1016/j.ijheatmasstransfer.2009.10.001
  • Ali ME, Sandeep N. Cattaneo–Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: a numerical study. Res Phys. 2017;7:21–30.
  • Chhabra RP. Non-Newtonian fluids: an introduction. Rheol Complex Fluids. 2010: 3–4. doi:10.1007/978-1-4419-6494-6_1
  • Tiwari RK, Das MK. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf. 2007;50(9-10):2002–2018. doi:10.1016/j.ijheatmasstransfer.2006.09.034
  • Vajravelu K, Cannon JR. Fluid flow over a nonlinearly stretching sheet. Appl Math Comput. 2006;181(1):609–618.
  • Jamshed W, Kumar V, Kumar V. Computational examination of Casson nanofluid due to a non-linear stretching sheet subjected to particle shape factor: Tiwari and Das model. Numer Methods Part Differ Equa. 2022;38(4):848–875. doi:10.1002/num.22705
  • Thumma T, Mishra SR, Abbas MA, et al. Three-dimensional nanofluid stirring with non-uniform heat source/sink through an elongated sheet. Appl Math Comput. 2022;421:126927.
  • Wang CY. Free convection on a vertical stretching surface. J Appl Math Mech. 1989;69(11):418–420.
  • Reddy Gorla RS, Sidawi I. Free convection on a vertical stretching surface with suction and blowing. Appl Sci Res. 1994;52:247–257. doi:10.1007/BF00853952