469
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Thermal analysis of magnetic Iron-Oxide nanoparticle with combination of Water and Ethylene Glycol passes through a partially heated permeable square enclosure

, ORCID Icon, ORCID Icon &
Article: 2257366 | Received 28 Jul 2023, Accepted 06 Sep 2023, Published online: 19 Sep 2023

References

  • Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transfer. 2009;52:3187–3196. doi:10.1016/j.ijheatmasstransfer.2009.02.006
  • Godson L, Raja B, Lal DM, et al. Enhancement of heat transfer using nanofluids – an overview. Renew Sust Energ Rev. 2010;14:629–641. doi:10.1016/j.rser.2009.10.004
  • Saidur R, Leong KY, Mohammed HA. A review on applications and challenges of nanofluids. Renew Sust Energ Rev. 2011;15:1646–1668. doi:10.1016/j.rser.2010.11.035
  • Sheikholeslami M, Ganji DD. Nanofluid convective heat transfer using semi analytical and numerical approaches: a review. J Taiwan Inst Chem Eng. 2016;65:43–77. doi:10.1016/j.jtice.2016.05.014
  • Krishna MV, Chamkha AJ. Hall and ion slip effects on unsteady MHD convective rotating flow of nanofluids – application in biomedical engineering. J Egypt Math Soc. 2020;28:1, doi:10.1186/s42787-019-0065-2
  • Minea AA. Hybrid nanofluids based on Al2O3, TiO2 and SiO2: numerical evaluation of different approaches. Int J Heat Mass Transfer. 2017;104:852–860. doi:10.1016/j.ijheatmasstransfer.2016.09.012
  • Li Z, Sheikholeslami M, Chamkha AJ, et al. Control volume finite element method for nanofluid MHD natural convective flow inside a sinusoidal annulus under the impact of thermal radiation. Comput Methods Appl Mech Eng. 2018;338:618–633. doi:10.1016/j.cma.2018.04.023
  • Alsabery AI, Ismael MA, Chamkha AJ, et al. Mixed convection of Al2O3-water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno’s two-phase model. Int J Heat Mass Transfer. 2018;119:939–961. doi:10.1016/j.ijheatmasstransfer.2017.11.136
  • Izadi S, Armaghani T, Ghasemiasl R, et al. A comprehensive review on mixed convection of nanofluids in various shapes of enclosures. Powder Technol. 2019;343:880–907. doi:10.1016/j.powtec.2018.11.006
  • Abbas I, Hobiny A, Marin M. Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity. J Taibah Univ Sci. 2020;14:1369–1376. doi:10.1080/16583655.2020.1824465
  • Mousa MM, Ali MR, Ma WX. A combined method for simulating MHD convection in square cavities through localized heating by method of line and penalty-artificial compressibility. J Taibah Univ Sci. 2021;15:208–217. doi:10.1080/16583655.2021.1951503
  • Deshmukh K, Karmare S, Patil P. Experimental investigation of convective heat transfer performance of TiN nanofluid charged U-pipe evacuated tube solar thermal collector. Appl Therm Eng. 2023;225:120199, doi:10.1016/j.applthermaleng.2023.120199
  • Zhao D, Hedayat M, Barzinjy AA, et al. Numerical investigation of Fe3O4 nanoparticles transportation due to electric field in a porous cavity with lid walls. J Mol Liq. 2019;293:111537, doi:10.1016/j.molliq.2019.111537
  • Hu Y, Shi L, Zhang Z, et al. Magnetic regulating the phase change process of Fe3O4-paraffin wax nanocomposites in a square cavity. Energy Convers Manag. 2020;213:112829, doi:10.1016/j.enconman.2020.112829
  • Molana M, Dogonchi AS, Armaghani T, et al. Investigation of hydrothermal behavior of Fe3O4-H2O nanofluid natural convection in a novel shape of porous cavity subjected to magnetic field dependent (MFD) viscosity. J Energy Storage. 2020;30:101395, doi:10.1016/j.est.2020.101395
  • Rahman MM, Chamkha AJ, Elmasry Y, et al. The heat transfer behavior of MHD micro-polar MWCNT- Fe3O4/Water Hybrid Nano-fluid in an inclined⊥ shaped cavity with semi-circular heat source inside. Case Stud Therm Eng. 2022;38:102316, doi:10.1016/j.csite.2022.102316
  • He W, Zhuang Y, Chen Y, et al. Experimental and numerical investigations on the melting behavior of Fe3O4 nanoparticles composited paraffin wax in a cubic cavity under a magnetic-field. Int J Therm Sci. 2023;184:107961, doi:10.1016/j.ijthermalsci.2022.107961
  • Khan MI, Shah F, Waqas M, et al. The role of γAl2O3− H2O and γAl2O3 − C2H6O2 nanomaterials in Darcy-Forchheimer stagnation point flow: an analysis using entropy optimization. Int J Therm Sci. 2019;140:20–27. doi:10.1016/j.ijthermalsci.2019.02.004
  • Elshehabey HM, Raizah Z, Öztop HF, et al. MHD natural convective flow of Fe3O4− H2O ferrofluids in an inclined partial open complex-wavy-walls ringed enclosures using non-linear Boussinesq approximation. Int J Mech Sci. 2020;170:105352, doi:10.1016/j.ijmecsci.2019.105352
  • Taher MA, Siddiqa S, Kamrujjaman M, et al. Free convection of temperature-dependent thermal conductivity based ethylene glycol-Al2O3 nanofluid in an open cavity with wall heat flux. Int Commun Heat Mass Transf. 2022;138:106379, doi:10.1016/j.icheatmasstransfer.2022.106379
  • Farooq U, Waqas H, Muhammad T, et al. Computation of nonlinear thermal radiation in magnetized nanofluid flow with entropy generation. Appl Math Comput. 2022;423:126900, doi:10.1016/j.amc.2021.126900
  • Chamkha AJ, Al-Naser H. Double-diffusive convection in an inclined porous enclosure with opposing temperature and concentration gradients. Int J Therm Sci. 2001;40:227–244. doi:10.1016/S1290-0729(00)01213-8
  • Groşan T, Revnic C, Pop I, et al. Free convection heat transfer in a square cavity filled with a porous medium saturated by a nanofluid. Int J Heat Mass Transfer. 2015;87:36–41. doi:10.1016/j.ijheatmasstransfer.2015.03.078
  • Mehmood K, Hussain S, Sagheer M. Numerical simulation of MHD mixed convection in alumina–water nanofluid filled square porous cavity using KKL model: Effects of non-linear thermal radiation and inclined magnetic field. J Mol Liq. 2017;238:485–498. doi:10.1016/j.molliq.2017.05.019
  • Alsabery AI, Mohebbi R, Chamkha A, et al. Effect of local thermal non-equilibrium model on natural convection in a nanofluid-filled wavy-walled porous cavity containing inner solid cylinder. Chem Eng Sci. 2019;201:247–263. doi:10.1016/j.ces.2019.03.006
  • Sumithra A, Sivaraj R, Benazir AJ, et al. Nonlinear thermal radiation and activation energy effects on bioconvective flow of Eyring-Powell fluid. Comput Therm Sci. 2021;13:85–99. doi:10.1615/ComputThermalScien.2021039113
  • Sumithra A, Sivaraj R. Chemically reactive magnetohydrodynamic mixed convective nanofluid flow inside a square porous enclosure with viscous dissipation and Ohmic heating. Eur Phys J Plus. 2022;137:1193, doi:10.1140/epjp/s13360-022-03409-9
  • Sumithra A, Sivaraj R. Impact of exothermic chemical reaction on MHD unsteady mixed convective flow in a rectangular porous cavity filled with nanofluid. Waves Random Complex Media. 2022: 1–22. doi:10.1080/17455030.2022.2139014
  • Chamkha AJ. MHD-free convection from a vertical plate embedded in a thermally stratified porous medium with Hall effects. Appl Math Model. 1997;21:603–609. doi:10.1016/S0307-904X(97)00084-X
  • Öztop HF, Sakhrieh A, Abu-Nada E, et al. Mixed convection of MHD flow in nanofluid filled and partially heated wavy walled lid-driven enclosure. Int Commun Heat Mass Transf. 2017;86:42–51. doi:10.1016/j.icheatmasstransfer.2017.05.011
  • Chamkha AJ, Dogonchi AS, Ganji DD. Magnetohydrodynamic nanofluid natural convection in a cavity under thermal radiation and shape factor of nanoparticles impacts: a numerical study using CVFEM. Appl Sci. 2018;8:2396, doi:10.3390/app8122396
  • Krishna MV, Chamkha AJ. Hall effects on MHD squeezing flow of a water-based nanofluid between two parallel disks. J Porous Media. 2019;22:209–223. doi:10.1615/JPorMedia.2018028721
  • Krishna MV, Swarnalathamma BV, Chamkha AJ. Investigations of Soret, Joule and Hall effects on MHD rotating mixed convective flow past an infinite vertical porous plate. J Ocean Eng Sci. 2019;4:263–275. doi:10.1016/j.joes.2019.05.002
  • Devi NR, Moolya S, Öztop HF, et al. A review on ferrofluids with the effect of MHD and entropy generation due to convective heat transfer. Eur Phys J Plus. 2022;137:482, doi:10.1140/epjp/s13360-022-02616-8
  • Geridonmez P, Oztop H. Natural convection in a sinusoidally heated cavity filled with ferrofluid in the presence of partial variable magnetic field. Int J Numer Methods Heat Fluid Flow. 2023;33:411–435. doi:10.1108/HFF-01-2022-0053
  • Dogonchi AS, Chamkha AJ, Ganji DD. A numerical investigation of magneto-hydrodynamic natural convection of Cu–water nanofluid in a wavy cavity using CVFEM. J. Therm. Anal. Calorim. 2019; 135:2599–2611. doi:10.1007/s10973-018-7339-z
  • Rahman MM, Alim MA, Sarker MMA. Numerical study on the conjugate effect of joule heating and magnato-hydrodynamics mixed convection in an obstructed lid-driven square cavity. Int Commun Heat Mass Transf. 2010;37:524–534. doi:10.1016/j.icheatmasstransfer.2009.12.012
  • Ghaffarpasand O. Numerical study of MHD natural convection inside a sinusoidally heated lid-driven cavity filled with Fe3O4-water nanofluid in the presence of Joule heating. Appl Math Model. 2016;40:9165–9182. doi:10.1016/j.apm.2016.05.038
  • Kumar M, Reddy GJ, Kumar NN, et al. Reconstruction of an informative railway wheel defect signal from wheel–rail contact signals measured by multiple wayside sensors. Proc Inst Mech. 2019;233:49–62. doi:10.1177/0954409718784362
  • Reddy ES, Panda S. MHD natural convection nanofluid flows in a wavy trapezoidal porous enclosure with differentially heated side walls. J Natl Sci Found. 2020;48:57–68. doi:10.4038/jnsfsr.v48i1.9934
  • Khanafer KM, Chamkha AJ. Hydromagnetic natural convection from an inclined porous square enclosure with heat generation. Numer Heat Transf A: Appl. 1998;33:891–910. doi:10.1080/10407789808913972
  • Rashad AM, Ismael MA, Chamkha AJ, et al. MHD mixed convection of localized heat source/sink in a nanofluid-filled lid-driven square cavity with partial slip. J Taiwan Inst Chem Eng. 2016;68:173–186. doi:10.1016/j.jtice.2016.08.033
  • Mansour MA, Siddiqa S, Gorla RSR, et al. Effects of heat source and sink on entropy generation and MHD natural convection of Al 2 O 3 -Cu/water hybrid nanofluid filled with square porous cavity. Therm Sci Eng Prog. 2018;6:57–71. doi:10.1016/j.tsep.2017.10.014
  • Alsabery AI, Gedik E, Chamkha AJ, et al. Effects of two-phase nanofluid model and localized heat source/sink on natural convection in a square cavity with a solid circular cylinder. Comput Methods Appl Mech Eng. 2019;346:952–981. doi:10.1016/j.cma.2018.09.041
  • Tian Z, Shahsavar A, Al-Rashed AA, et al. Numerical simulation of nanofluid convective heat transfer in an oblique cavity with conductive edges equipped with a constant temperature heat source: Entropy production analysis. Comput Math Appl. 2021;81:725–736. doi:10.1016/j.camwa.2019.12.007
  • Yang Y, Pu W, Yao Z, et al. Experimental and numerical investigations on the intermittent heat transfer performance of rectangular cavity plate fin phase change material based heat sink. J Energy Storage. 2023;60:106607, doi:10.1016/j.est.2023.106607
  • El Moutaouakil L, Boukendil M, Hidki R, et al. Analytical solution for natural convection of a heat-generating fluid in a vertical rectangular cavity with two pairs of heat source/sink. Therm Sci Eng Prog. 2023;40:101738, doi:10.1016/j.tsep.2023.101738
  • Sohani A, Shahverdian MH, Sayyaadi H, et al. An optimum energy, economic, and environmental design based on DEVAP concept to reach maximum heat recovery in a PV-wind turbine system with hydrogen storage. Energy Convers Manag. 2023;288:117147, doi:10.1016/j.enconman.2023.117147
  • Wang D, Feng D, Peng H, et al. Implications of steep hilly terrain for modeling wind-turbine wakes. J Clean Prod. 2023;398:136614, doi:10.1016/j.jclepro.2023.136614
  • Sohani A, Cornaro C, Shahverdian MH, et al. Building integrated photovoltaic/thermal technologies in Middle Eastern and North African countries: Current trends and future perspectives. Renew Sustain Energy rev. 2023;182:113370, doi:10.1016/j.rser.2023.113370
  • Harlow FH, Welch JE. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids. 1965;8:2182–2189. doi:10.1063/1.1761178