457
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Promising reddish-orange light as Eu3+ incorporated in zinc-borosilicate glass derived from the waste glass bottle

, ORCID Icon, , , , & show all
Article: 2260080 | Received 20 Apr 2022, Accepted 05 Sep 2023, Published online: 19 Sep 2023

References

  • Xiang J, Yang J, Luo N, et al. Optimized photoluminescence and electronic properties of europium doped phosphate red phosphor. Results Phys. 2019;13:102258. doi:10.1016/j.rinp.2019.102258
  • Mao W, Cai M, Xie W, et al. Tunable white light in trivalent europium single doped tin fluorophosphates ultra-low melting glass. J Alloys Compd. 2019;805:205–210. doi:10.1016/j.jallcom.2019.07.014
  • Omri K, Lahouli R. Tunable dielectric and microstructure properties Zn2SiO4-Mn glass-ceramics for multifunctional applications. J Mater Sci Mater Electron. 2019;30:7834–7839. doi:10.1007/s10854-019-01102-9
  • Xiao Y, Wu Z, Yao Q, et al. Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications. Aggregate. 2021;2:114–132. doi:10.1002/agt2.11
  • Li K, Zhu D, Lian H. Up-conversion luminescence and optical temperature sensing properties in novel KBaY(MoO4)3:Yb3+,Er3+ materials for temperature sensors. J Alloys Compd. 2020;816:152554. doi:10.1016/j.jallcom.2019.152554
  • Li K, Zhu D, Yue C. Exceptional low-temperature fluorescence sensing properties in novel KBaY(MoO4)3:Yb3+, Ho3+ materials based on FIR of Ho3+ transitions 5F5(1) → 5I8/5S2 → 5I8. J Mater Chem C. 2022;10:6603–6610. doi:10.1039/D2TC01061E
  • Kesarwani V, Rai VK. Optical thermometry and broad infrared luminescence in highly sensitized TBO glass. Opt Laser Technol. 2022;146:107535. doi:10.1016/j.optlastec.2021.107535
  • Zagrai M, Suciu RC, Rada S, et al. Structural and optical properties of Eu3+ ions in lead glass for photonic applications. J Non Cryst Solids. 2021;569:120988. doi:10.1016/j.jnoncrysol.2021.120988
  • Jaafar SH, Zaid MHM, Matori KA, et al. Effect of sintering temperatures and foaming agent content to the physical and structural properties of wollastonite based foam glass-ceramics. Sci Sinter. 2020;52:269–281. doi:10.2298/SOS2003269J
  • Cheong WM, Zaid MHM, Matori KA, et al. Structural, elastic and mechanical analysis of samarium doped zinc-borosilicate glass. Optik (Stuttg). 2022;267:169658. doi:10.1016/j.ijleo.2022.169658
  • Zaid MHM, Matori KA, Wah LC, et al. Elastic moduli prediction and correlation in soda lime silicate glasses containing ZnO. Int J Phys Sci. 2011;6:1404–1410. doi:10.5897/IJPS11.111
  • Vander Stouw GJ, Sundaram SK. Thermal stability of crystalline phases in MnO-doped zinc borosilicate glasses. Appl Phys A Mater Sci Process. 2020;126:1–13. doi:10.1007/s00339-020-03750-9
  • Mariselvam K, Liu J. Synthesis and luminescence properties of Eu3+ doped potassium titano telluroborate (KTTB) glasses for red laser applications. J Lumin. 2021;230:117735. doi:10.1016/j.jlumin.2020.117735
  • Elkholy H, Othman H, Hager I, et al. Europium-doped tellurite glasses: the Eu2+ emission in tellurite, adjusting Eu2+ and Eu3+ emissions toward white light emission. Materials (Basel). 2019;12:4140. doi:10.3390/ma12244140
  • Rajaramakrishna R, Nijapai P, Kidkhunthod P, et al. Molecular dynamics simulation and luminescence properties of Eu3+ doped molybdenum gadolinium borate glasses for red emission. J Alloys Compd. 2020;813:151914. doi:10.1016/j.jallcom.2019.151914
  • Geng X, Xie Y, Ma Y, et al. Abnormal thermal quenching and application for w-LEDs: Double perovskite Ca2InSbO6:Eu3+ red-emitting phosphor. J Alloys Compd. 2020;847:156249. doi:10.1016/j.jallcom.2020.156249
  • Effendy N, Zaid MHM, Sidek HAA, et al. Influence of ZnO to the physical, elastic and gamma radiation shielding properties of the tellurite glass system using MCNP-5 simulation code. Radiat Phys Chem. 2021;188:109665. doi:10.1016/j.radphyschem.2021.109665
  • Babu BC, Rao BV, Ravi M, et al. Structural, microstructural, optical, and dielectric properties of Mn2+: Willemite Zn2SiO4 nanocomposites obtained by a sol-gel method. J Mol Struct. 2017;1127:6–14. doi:10.1016/j.molstruc.2016.07.074
  • Wahab SAA, Matori KA, Aziz SHA, et al. Synthesis of cobalt oxide Co3O4 doped zinc silicate based glass-ceramic derived for LED applications. Optik (Stuttg). 2019;179:919–926. doi:10.1016/j.ijleo.2018.11.025
  • Markovska I, Dimitrov T. Synthesis and characterization of willemite ceramic pigments suitable for the ceramic industry by utilization of rice husk ash. J Chem Biol Phys Sci. 2019;9; doi:10.24214/jcbps.a.9.4.21932
  • Ibreva T, Dimitrov T, Titorenkova R, et al. Synthesis and characterization of willemite ceramic pigments in the system xCoO. (2–x)ZnO. SiO2. Bulg Chem Commun. 2018;50:31–37.
  • Ceniceros-Orozco VE, Escorcia-García J, Gutiérrez-Chavarría CA, et al. Orange-reddish photoluminescence enhancement and wollastonite nanocrystals formation induced by CaO in Sm3+-doped calcium sodium borosilicate glasses. Ceram Int. 2022. doi:10.1016/j.ceramint.2022.01.347
  • Halimah MK, Asyikin AS, Nazrin SN, et al. Influence of erbium oxide on structural, physical, elastic and luminescence properties of rice husk biosilicate zinc borotellurite glasses for laser application. J Non Cryst Solids. 2020: 1–7. doi:10.1016/j.jnoncrysol.2020.120467
  • Khaidir REM, Fen YW, Zaid MHM, et al. Exploring Eu3+-doped ZnO-SiO2 glass derived by recycling renewable source of waste rice husk for white-LEDs application. Results Phys. 2019;15. doi:10.1016/j.rinp.2019.102596
  • Kawano N, Shinozaki K, Kato T, et al. Radiation response properties of Eu3+-doped K2O–Ta2O5–Ga2O3 glasses. Ceram. Int. 2022;48:9353–9361. doi:10.1016/j.ceramint.2021.12.130
  • Monisha M, Murari MS, Sayyed MI, et al. Thermal, structural and optical behaviour of Eu3+ ions in Zinc Alumino Boro-Silicate glasses for bright red emissions. Mater Chem Phys. 2021;270:124787. doi:10.1016/j.matchemphys.2021.124787
  • Jaafar SH, Mohd Zaid MH, Matori KA, et al. Synthesis of Eu3+-doped ZnO/Zn2SiO4 composite phosphor for potent optoelectronic applications. Brazilian J Phys. 2022;52. doi:10.1007/s13538-021-01017-z
  • Hajer SS, Halimah MK, Azmi Z, et al. Effect of samarium nanoparticles on optical properties of zinc borotellurite glass system. Mater Sci Forum. 2016;846:63–68. doi:10.4028/www.scientific.net/MSF.846.63
  • Makuła P, Pacia M, Macyk W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis Spectra. J Phys Chem Lett. 2018;9:6814–6817. doi:10.1021/acs.jpclett.8b02892
  • Singh R, Bedyal AK, Manhas M, et al. Charge compensated CaSr2(PO4)2:Sm3+, Li+/Na+/K+ phosphor: Luminescence and thermometric studies. J Alloys Compd. 2022;901:163793. doi:10.1016/j.jallcom.2022.163793
  • Al-Hadeethi Y, Ahmed M, Al-Heniti SH, et al. Rare earth Co-Doped tellurite glass ceramics: Potential use in optical and radiation shielding applications. Ceram Int. 2020;46:19198–19208. doi:10.1016/j.ceramint.2020.04.257
  • Fadhilah Zalamin SN, Mohd Zaid MH, Matori KA, et al. Comprehensive study on optical and luminescence properties of Sm3+ doped magnesium borotellurite glasses. J Phys Chem Solids. 2022;163:110563. doi:10.1016/j.jpcs.2021.110563
  • Ullah I, Khan I, Shah SK, et al. Luminescence properties of Sm3+ doped Na2B4O7 glasses for lighting application. J Lumin. 2021;230:117700. doi:10.1016/j.jlumin.2020.117700
  • Al-Harbi N, Sayyed MI, Al-Hadeethi Y, et al. A novel CaO–K2O–Na2O–P2O5 glass systems for radiation shielding applications. Radiat. Phys. Chem. 2021;188; doi:10.1016/j.radphyschem.2021.109645
  • Wahab EAA, Shaaban KS, Al-Baradi AM. Enhancement of optical and physical parameters of lead zinc silicate glasses by doping W+3 ions. Silicon. 2021. doi:10.1007/s12633-021-01236-8
  • Abu-Khadra AS, Taha AM, Abdel-Ghany AM, et al. Effect of silver iodide (AgI) on structural and optical properties of cobalt doped lead-borate glasses. Ceram Int. 2021;47:26271–26279. doi:10.1016/j.ceramint.2021.06.036
  • Shaari HR, Azlan MN, Azlina Y, et al. Investigation of Structural and optical properties of graphene oxide-coated neodymium nanoparticles doped zinc-tellurite glass for glass fiber. J Inorg Organomet Polym Mater. 2021;31:4349–4359. doi:10.1007/s10904-021-02061-7
  • Abouhaswa AS, Sayyed MI, Altowyan AS, et al. Evaluation of optical and gamma ray shielding features for tungsten-based bismuth borate glasses. Opt Mater (Amst). 2020;106:109981. doi:10.1016/j.optmat.2020.109981
  • Paswan SK, Kumari S, Kar M, et al. Optimization of structure-property relationships in nickel ferrite nanoparticles annealed at different temperature. J Phys Chem Solids. 2021;151:109928. doi:10.1016/j.jpcs.2020.109928
  • Essalah G, Kadim G, Jabar A, et al. Structural, optical, photoluminescence properties and Ab initio calculations of new Zn2SiO4/ZnO composite for white light emitting diodes. Ceram Int. 2020;46:12656–12664. doi:10.1016/j.ceramint.2020.02.031
  • Stalin S, Gaikwad DK, Al-Buriahi MS, et al. Influence of Bi2O3/WO3 substitution on the optical, mechanical, chemical durability and gamma ray shielding properties of lithium-borate glasses. Ceram Int. 2020. doi:10.1016/j.ceramint.2020.10.109
  • Zhang X, Zhang J, Zhou C, et al. High refractive index of Eu3+ doped La2O3-TiO2-Nb2O5-WO3 oxide glasses with low wavelength dispersion. J Non Cryst Solids. 2022;581:121228. doi:10.1016/j.jnoncrysol.2021.121228
  • Ezenwaka LN, Umeokwonna NS, Okoli NL. Optical, structural, morphological, and compositional properties of cobalt doped tin oxide (CTO) thin films deposited by modified chemical bath method in alkaline medium. Ceram Int. 2020;46:6318–6325. doi:10.1016/j.ceramint.2019.11.106
  • Galdámez-Martinez A, Santana G, Güell F, et al. Photoluminescence of ZnO nanowires: a review. Nanomaterials. 2020;10:857. doi:10.3390/nano10050857
  • Lima SAM, Sigoli FA, Jafelicci JM, et al. Luminescent properties and lattice defects correlation on zinc oxide. Int J Inorg Mater. 2001;3:749–754. doi:10.1016/S1466-6049(01)00055-1
  • Mazabuel-Collazos A, Gómez CD, Rodríguez-Páez EJ. ZnO-TiO2 nanocomposites synthesized by wet-chemical route: Study of their structural and optical properties. Mater Chem Phys. 2019;222:230–245. doi:10.1016/j.matchemphys.2018.10.007
  • Cao R, Liang H, Chen T, et al. Study on luminescence characterizations of SrMg2La2W2O12:Eu3+ red-emitting phosphor. J Phys Chem Solids. 2022;163:110569. doi:10.1016/j.jpcs.2021.110569
  • Cao R, Lv X, Jiao Y, et al. Ca3La6Si6O24:Eu3+ orange-red-emitting phosphor: synthesis, structure and luminescence properties. Mater Res Bull. 2020;122:110651. doi:10.1016/j.materresbull.2019.110651
  • Shi Y, Xu Y, Hu W, et al. Energy transfer effect in novel Sm3+-Eu3+ co-activated CaMgAl10O17 phosphors. Optik (Stuttg). 2020;202:163599. doi:10.1016/j.ijleo.2019.163599
  • Wahab SAA, Matori KA, Aziz SHA, et al. Effect of ZnO on the phase transformation and optical properties of silicate glass frits using rice husk ash as a SiO2 source. J Mater Res Technol. 2020;9:11013–11021. doi:10.1016/j.jmrt.2020.08.005
  • Janotti A, Van De Walle CG. Fundamentals of zinc oxide as a semiconductor. Reports Prog Phys. 2009;72; doi:10.1088/0034-4885/72/12/126501
  • Fu Z, Yang B, Li L, et al. An intense ultraviolet photoluminescence in sol-gel ZnO-SiO2 nanocomposites. J Phys Condens Matter. 2003;15:2867–2873. doi:10.1088/0953-8984/15/17/335
  • Dey S, Das S, Kar AK. Role of precursor dependent nanostructures of ZnO on its optical and photocatalytic activity and influence of FRET between ZnO and methylene blue dye on photocatalysis. Mater Chem Phys. 2021;270:124872. doi:10.1016/j.matchemphys.2021.124872
  • Ferreira NS, Sasaki JM, Silva RS, et al. Visible-light-responsive photocatalytic activity significantly enhanced by active [VZn+ VO+] defects in self-assembled ZnO nanoparticles. Inorg Chem. 2021;60:4475–4496. doi:10.1021/acs.inorgchem.0c03327
  • Naresh V, Rudramadevi BH, Buddhudu S. Crossrelaxations and non-radiative energy transfer from (4G5/2) Sm3+→ (5D0) Eu3+: B2O3–ZnO glasses. J Alloys Compd. 2015;632:59–67. doi:10.1016/j.jallcom.2015.01.138
  • Nagaraj R, Raja A, Ranjith S. Synthesis and luminescence properties of novel red-emitting Eu3+ ions doped silicate phosphors for photonic applications. J Alloys Compd. 2020;827:154289. doi:10.1016/j.jallcom.2020.154289
  • Kam CH, Buddhudu S. Photoluminescence properties of Eu3+:ZrF4–BaF2–LaF3–YF3–AlF3–NaF glasses. Phys. B Condens. Matter. 2004;344:182–189. doi:10.1016/j.physb.2003.09.256
  • Selvi S, Marimuthu K, Suriya Murthy N, et al. Red light generation through the lead boro−telluro−phosphate glasses activated by Eu3+ ions. J. Mol. Struct. 2016;1119:276–285. doi:10.1016/j.molstruc.2016.04.073
  • Meng X, Huang S, Shang M. Red emitting Ba2GdVO6:Eu3+ phosphors for blue light converted warm white LEDs. Inorg Chem Commun. 2020;113:107768. doi:10.1016/j.inoche.2020.107768
  • Singh V, Kaur S, Jayasimhadri M. Luminescence properties of orange emitting CaAl4O7:Sm3+ phosphor for solid state lighting applications. Solid State Sci. 2020;101:106049. doi:10.1016/j.solidstatesciences.2019.106049