618
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational analyses of RPIA gene mutation causing Ribose-5-phosphate isomerase deficiency: a rarest known metabolic disorder in humans

, , , , , , & show all
Article: 2262753 | Received 12 Sep 2022, Accepted 20 Sep 2023, Published online: 29 Sep 2023

References

  • Grochowski LL, Xu H, White RH. Ribose-5-phosphate biosynthesis in methanocaldococcus jannaschii occurs in the absence of a pentose-phosphate pathway. J Bacteriol. 2005;187; doi:10.1128/JB.187.21.7382-7389.2005
  • Lobley CMC, Aller P, Douangamath A, et al. Structure of ribose 5-phosphate isomerase from the probiotic bacterium lactobacillus salivarius UCC118. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012;68:1427–1433. doi:10.1107/S174430911204273X
  • Chen J, Wu H, Zhang W, et al. Ribose-5-phosphate isomerases: characteristics, structural features, and applications. Appl Microbiol Biotechnol. 2020;104:6429–6441. doi:10.1007/s00253-020-10735-4
  • Huck JHJ, Verhoeven NM, Struys EA, et al. Ribose-5-phosphate isomerase deficiency: new inborn error in the pentose phosphate pathway associated with a slowly progressive leukoencephalopathy. Am J Hum Genet. 2004;74:745–751. doi:10.1086/383204
  • Van Der Knaap MS, Wevers RA, Struys EA, et al. Leukoencephalopathy associated with a disturbance in the metabolism of polyols. Ann Neurol. 1999;46:925–928. doi:10.1002/1531-8249(199912)46:6<925::AID-ANA18>3.0.CO;2-J
  • Brooks SS, Anderson S, Bhise V, et al. Further delineation of ribose-5-phosphate isomerase deficiency: report of a third case. J Child Neurol. 2018;33:784–787. doi:10.1177/0883073818789316
  • Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004;11:377–394. doi:10.1089/1066527041410418
  • Du Z, Su H, Wang W, et al. The trRosetta server for fast and accurate protein structure prediction. Nat Protoc. 2021;16:5634–5651. doi:10.1038/s41596-021-00628-9
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimera – a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612. doi:10.1002/jcc.20084
  • Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2012;41:D808–D815. doi:10.1093/nar/gks1094
  • Gaillard T. Evaluation of AutoDock and AutoDock vina on the CASF-2013 benchmark. J Chem Inf Model. 2018;58:1697–170. doi:10.1021/acs.jcim.8b00312
  • REDDY J. Computational design of novel oral insulin conjugates for the development of solid oral insulin dosage forms. Asian J Pharm Clin Res. 2020: 141–151. doi:10.22159/ajpcr.2020.v13i5.37308
  • Tian W, Chen C, Lei X, et al. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 2018;46:W363–W367. doi:10.1093/nar/gky473
  • Dege N, Gökce H, Doğan OE, et al. Quantum computational, spectroscopic investigations on N-(2-((2-chloro-4,5-dicyanophenyl)amino)ethyl)-4-methylbenzenesulfonamide by DFT/TD-DFT with different solvents, molecular docking and drug-likeness researches. Colloids Surf A Physicochem Eng Asp. 2022;638:128311, doi:10.1016/j.colsurfa.2022.128311
  • Gümüş M, Babacan ŞN, Demir Y, et al. Discovery of sulfadrug–pyrrole conjugates as carbonic anhydrase and acetylcholinesterase inhibitors. Arch Pharm (Weinheim). 2022;355; doi:10.1002/ardp.202100242
  • Sert Y, Gümüş M, Gökce H, et al. Molecular docking, hirshfeld surface, structural, spectroscopic, electronic, NLO and thermodynamic analyses on novel hybrid compounds containing pyrazole and coumarin cores. J Mol Struct. 2018;1171:850–866. doi:10.1016/j.molstruc.2018.06.069
  • Gökce H, Şen F, Sert Y, et al. Quantum computational investigation of (E)-1-(4-methoxyphenyl)-5-methyl-N′-(3-phenoxybenzylidene)1H-1,2,3-triazole-4-carbohydrazide. Molecules. 2022;27:2193, doi:10.3390/molecules27072193
  • Wallace AC, Laskowski RA, Thornton JM. Ligplot: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel. 1995;8:127–134. doi:10.1093/protein/8.2.127
  • Spencer N, Hopkinson DA. Biochemical genetics of the pentose phosphate cycle: human ribose 5-phosphate isomerase (RPI) and ribulose 5-phosphate 3-epimerase (RPE). Ann Hum Genet. 1980;43:335–342. doi:10.1111/j.1469-1809.1980.tb01567.x
  • Wamelink MMC, Struys EA, Jakobs C. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. J Inherit Metab Dis. 2008;31:703–717. doi:10.1007/s10545-008-1015-6
  • Buj R, Chen CW, Dahl ES, et al. Suppression of p16 induces mTORC1-mediated nucleotide metabolic reprogramming. Cell Rep. 2019;28:1971–1980.e8. doi:10.1016/j.celrep.2019.07.084
  • Wittig R, Coy JF. The role of glucose metabolism and glucose-associated signalling in cancer. Perspect Medicin Chem. 2007;1; doi:10.1177/1177391(0700100006
  • Chou YT, Jiang JK, Yang MH, et al. Identification of a noncanonical function for ribose-5-phosphate isomerase a promotes colorectal cancer formation by stabilizing and activating β-catenin via a novel C-terminal domain. PLoS Biol. 2018;16:e2003714, doi:10.1371/journal.pbio.2003714
  • Ciou SC, Chou YT, Liu YL, et al. Ribose-5-phosphate isomerase a regulates hepatocarcinogenesis via PP2A and ERK signaling. Int J Cancer. 2015;137:104–115. doi:10.1002/ijc.29361
  • Tong X, Zhao F, Thompson CB. The molecular determinants of de novo nucleotide biosynthesis in cancer cells. Curr Opin Genet Dev. 2009;19:32–37. doi:10.1016/j.gde.2009.01.002
  • Riganti C, Gazzano E, Polimeni M, et al. The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 2012;53:421–436. doi:10.1016/j.freeradbiomed.2012.05.006
  • Szwarc MM, Kommagani R, Putluri V, et al. Steroid receptor coactivator-2 controls the pentose phosphate pathway through RPIA in human endometrial cancer cells. Sci Rep. 2018;8; doi:10.1038/s41598-018-31372-y
  • Kaur P, Wamelink MMC, van der Knaap MS, et al. Confirmation of a rare genetic leukoencephalopathy due to a novel bi-allelic variant in RPIA. Eur J Med Genet. 2019;62:103708, doi:10.1016/j.ejmg.2019.103708
  • Hijikata A, Tsuji T, Shionyu M, et al. Decoding disease-causing mechanisms of missense mutations from supramolecular structures. Sci Rep. 2017;7; doi:10.1038/s41598-017-08902-1
  • Zhou X, Iversen ES, Parmigiani G. Classification of missense mutations of disease genes. J Am Stat Assoc. 2005;100:51–60. doi:10.1198/016214504000001817
  • Agrahari AK, Pieroni E, Gatto G, et al. The impact of missense mutation in PIGA associated to paroxysmal nocturnal hemoglobinuria and multiple congenital anomalies-hypotonia-seizures syndrome 2: a computational study. Heliyon. 2019;5:e02709, doi:10.1016/j.heliyon.2019.e02709
  • Krawczak M, Reiss J, Cooper DN. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet. 1992;90(1–2), doi:10.1007/BF00210743
  • Krawczak M, Thomas NST, Hundrieser B, et al. Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat. 2007;28:150–158. doi:10.1002/humu.20400
  • Muzammal M, Ali MZ, Brugger B, et al. A novel protein truncating mutation in L2HGDH causes L-2-hydroxyglutaric aciduria in a consanguineous Pakistani family. Metab Brain Dis. 2022;37:243–252. doi:10.1007/s11011-021-00832-2
  • Duran M, Kamerling JP, Bakker HD, et al. L-2-Hydroxyglutaric aciduria: an inborn error of metabolism? J Inherit Metab Dis. 1980;3:109–112. doi:10.1007/BF02312543
  • Naik N, Shah A, Wamelink MMC, et al. Rare case of ribose 5 phosphate isomerase deficiency with slowly progressive leukoencephalopathy. Neurology. 2017;89:1195–1196. doi:10.1212/WNL.0000000000004361
  • Sun S, Yang F, Tan G, et al. An extended set of yeast-based functional assays accurately identifies human disease mutations. Genome Res. 2016;26:670–680. doi:10.1101/gr.192526.115
  • Hanefeld F, Kruse B, Bruhn H, et al. In Vivo proton magnetic resonance spectroscopy of the brain in a patient with L-2-hydroxyglutaric acidemia. Pediatr Res. 1994;35:614–616. doi:10.1203/00006450-199405000-00015
  • Mahler EA, Johannsen J, Tsiakas K, et al. Exome sequencing in children, Dtsch. Arztebl Int. 2019, doi:10.3238/arztebl.2019.0197