750
Views
0
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Facile synthesis of novel CoWO4/FeWO4 hetrocomposite with efficient visible light photocatalytic degradation and hydrogen evolution aspects

, &
Article: 2265631 | Received 19 Jul 2023, Accepted 27 Sep 2023, Published online: 13 Oct 2023

References

  • Verboven I, Deferme W. Printing of flexible light emitting devices: a review on different technologies and devices, printing technologies and state-of-the-art applications and future prospects. Prog Mater Sci. 2021;118:100760. doi:10.1016/j.pmatsci.2020.100760
  • Nikolic MV, Milovanovic V, Vasiljevic ZZ, et al. Semiconductor gas sensors: materials, technology, design, and application. Sensors. 2020;20:6694. doi:10.3390/s20226694
  • Pham TA, Qamar A, Dinh T, et al. Nanoarchitectonics for wide bandgap semiconductor nanowires: toward the next generation of nanoelectromechanical systems for environmental monitoring. Adv Sci. 2020;7:2001294. doi:10.1002/advs.202001294
  • Sohail MI, Waris AA, Ayub MA, et al. Environmental application of nanomaterials: a promise to sustainable future. Compr Anal Chem. Elsevier 2019;87:1–54.
  • Abbas S, Dixit A, Chatterjee R, et al. Complex permittivity, complex permeability and microwave absorption properties of ferrite–polymer composites. J Magn Magn Mater. 2007;309:20–24. doi:10.1016/j.jmmm.2006.06.006
  • Abdel Maksoud M, Fahim RA, Bedir AG, et al. Engineered magnetic oxides nanoparticles as efficient sorbents for wastewater remediation: a review. Environ Chem Lett. 2022;20:519–562. doi:10.1007/s10311-021-01351-3
  • Chadha U, Selvaraj SK, Ashokan H, et al. Complex nanomaterials in catalysis for chemically significant applications: from synthesis and hydrocarbon processing to renewable energy applications. Adv Mater Sci Eng. 2022;2022:1–72.
  • Tlili I, Alkanhal TA. Nanotechnology for water purification: electrospun nanofibrous membrane in water and wastewater treatment. J Water Reuse Desalin. 2019;9:232–248. doi:10.2166/wrd.2019.057
  • Jassby D, Cath TY, Buisson H. The role of nanotechnology in industrial water treatment. Nat Nanotechnol. 2018;13:670–672. doi:10.1038/s41565-018-0234-8
  • Fahimirad S, Fahimirad Z, Sillanpää M. Efficient removal of water bacteria and viruses using electrospun nanofibers. Sci Total Environ. 2021;751:141673. doi:10.1016/j.scitotenv.2020.141673
  • Tahir MB, Sohaib M, Sagir M, et al. Reference Module in Materials Science and Materials Engineering. 2020.
  • Adhikari S, Lachgar A. Effect of particle size on the photocatalytic activity of BiNbO4 under visible light irradiation. J Phys Conf Ser, IOP Publishing. 2016: 012017. doi:10.1088/1742-6596/758/1/012017
  • Ajibade FO, Adelodun B, Lasisi KH, et al. Environmental pollution and their socioeconomic impacts, Microbe mediated remediation of environmental contaminants. Elsevier; 2021. pp. 321–354.
  • Kampouri S, Stylianou KC. Dual-Functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances. ACS Catal. 2019;9:4247–4270. doi:10.1021/acscatal.9b00332
  • Shelley M. The care and handling of art objects: practices in the metropolitan museum of Art (revised edition, 2019). Metropolitan Museum of Art; 2019.
  • Ajmal M, Islam M, Ali A. Structural, electrical and dielectric properties of hexa-ferrite-polyaniline nano-composites. J Supercond Novel Magn. 2018;31:1375–1382. doi:10.1007/s10948-017-4332-x
  • Khan IS, Ali MN, Hamid R, et al. Genotoxic effect of two commonly used food dyes metanil yellow and carmoisine using allium cepa L. as indicator. Toxicol Rep. 2020;7:370–375. doi:10.1016/j.toxrep.2020.02.009
  • Behera M, Nayak J, Banerjee S, et al. A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: an integrated system design approach. J Environ Chem Eng. 2021;9:105277. doi:10.1016/j.jece.2021.105277
  • Akbarzadeh R, Farhadian N, Asadi A, et al. Highly efficient visible-driven reduction of Cr(VI) by a novel black TiO2 photocatalyst. Environ Sci Pollut Res. 2021;28:9417–9429. doi:10.1007/s11356-020-11330-w
  • Zarei S, Farhadian N, Akbarzadeh R, et al. Fabrication of novel 2D Ag-TiO2/γ-Al2O3/chitosan nano-composite photocatalyst toward enhanced photocatalytic reduction of nitrate. Int J Biol Macromol. 2020;145:926–935. doi:10.1016/j.ijbiomac.2019.09.183
  • Kim Y-H, Wolf C, Kim H, et al. Charge carrier recombination and ion migration in metal-halide perovskite nanoparticle films for efficient light-emitting diodes. Nano Energy. 2018;52:329–335. doi:10.1016/j.nanoen.2018.07.030
  • Eslami A, Amini MM, Asadi A, et al. Photocatalytic degradation of ibuprofen and naproxen in water over NS-TiO2 coating on polycarbonate: process modeling and intermediates identification. Inorg Chem Commun. 2020;115:107888. doi:10.1016/j.inoche.2020.107888
  • Luo L, Zhang T, Wang M, et al. Recent advances in heterogeneous photo-driven oxidation of organic molecules by reactive oxygen species. ChemSusChem. 2020;13:5173–5184. doi:10.1002/cssc.202001398
  • Chen L, Huang C-P, Chuang Y, et al. Z-Scheme MoS2/TiO2/graphene nanohybrid photocatalysts for visible light-induced degradation for highly efficient water disinfection and antibacterial activity. New J Chem. 2022;46:14159–14169. doi:10.1039/D2NJ01824A
  • Irandost M, Akbarzadeh R, Pirsaheb M, et al. Fabrication of highly visible active N, S co-doped TiO2@MoS2 heterojunction with synergistic effect for photocatalytic degradation of diclofenac: mechanisms, modeling and degradation pathway. J Mol Liq. 2019;291:111342. doi:10.1016/j.molliq.2019.111342
  • Zhu W, Li Z, He C, et al. Enhanced photodegradation of sulfamethoxazole by a novel WO3-CNT composite under visible light irradiation. J Alloys Compd. 2018;754:153–162. doi:10.1016/j.jallcom.2018.04.286
  • Samuel O, Othman MHD, Kamaludin R, et al. Ceram Int. 2021;48:5845–5875.
  • Asadi A, Daglioglu N, Hasani T, et al. Construction of Mg-doped ZnO/g-C3N4@ZIF-8 multi-component catalyst with superior catalytic performance for the degradation of illicit drug under visible light. Colloids Surf, A. 2022;650:129536. doi:10.1016/j.colsurfa.2022.129536
  • Ren G, Wei Z, Liu S, et al. Recent review of BixMOy (M=V, Mo, W) for photocatalytic CO2 reduction into solar fuels. Chemosphere. 2022: 136026. doi:10.1016/j.chemosphere.2022.136026
  • Tran D-T, Dang V-C. Novel N,C,S-TiO2/WO3/rGO Z-scheme heterojunction with enhanced visible-light driven photocatalytic performance. J Colloid Interface Sci. 2022;610:49–60. doi:10.1016/j.jcis.2021.12.050
  • Nasseh N, Arghavan FS, Daglioglu N, et al. Fabrication of novel magnetic CuS/Fe3O4/GO nanocomposite for organic pollutant degradation under visible light irradiation. Environ Sci Pollut Res. 2021;28:19222–19233. doi:10.1007/s11356-020-12066-3
  • Thilagavathi T, Venugopal D, Marnadu R, et al. WO3/CoWO4 nanocomposite synthesis using a facile co-precipitation method for enhanced photocatalytic applications. J Phys Chem Solids. 2021;154:110066. doi:10.1016/j.jpcs.2021.110066
  • Khawar MR, Shad NA, Hussain S, et al. Cerium oxide nanosheets-based tertiary composites (CeO2/ZnO/ZnWO4) for supercapattery application and evaluation of faradic & non-faradic capacitive distribution by using donn's model. J Energy Storage. 2022;55:105778. doi:10.1016/j.est.2022.105778
  • Ikram M, Javed Y, Shad NA, et al. Facile hydrothermal synthesis of nickel tungstate (NiWO4) nanostructures with pronounced supercapacitor and electrochemical sensing activities. J Alloys Compd. 2021;878:160314. doi:10.1016/j.jallcom.2021.160314
  • Sajid MM, Zhai H, Alomayri T, et al. J Mater Sci: Mater Electron. 2022;33:1–16.
  • Sajid MM, Alomayri T. Synthesis of α-Fe2O3 rhombus nanoplates for photocatalytic investigation of cationic and anionic dyes and antibacterial aspect. J Taibah Univ Sci. 2022;16:1192–1201. doi:10.1080/16583655.2022.2154094
  • Ikram M, Rasheed S, Afzal AM, et al. Ultrasensitive V doped WO3 1D nanorods heterojunction photodetector with pronounced photosensing activities. J Alloys Compd. 2022;909:164753. doi:10.1016/j.jallcom.2022.164753
  • Shad NA, Sajid MM, Afzal AM, et al. Facile synthesis of Bi2WO6/rGO nanocomposites for photocatalytic and solar cell applications. Ceram Int. 2021;47:16101–16110. doi:10.1016/j.ceramint.2021.02.185
  • Shad NA, Sajid MM, Javed Y, et al. Lamellar shape lead tungstate (PbWO4) nanostructures as synergistic catalyst for peroxidase mimetic activity. Mater Res Express. 2020;7:015520. doi:10.1088/2053-1591/ab69cf
  • Shad NA, Sajid MM, Amin N, et al. Photocatalytic degradation performance of cadmium tungstate (CdWO4) nanosheets-assembly and their hydrogen storage features. Ceram Int. 2019;45:19015–19021. doi:10.1016/j.ceramint.2019.06.142
  • Sajid MM, Amin N, Shad NA, et al. Hydrothermal fabrication of monoclinic bismuth vanadate (m-BiVO4) nanoparticles for photocatalytic degradation of toxic organic dyes. Mater Sci Eng B. 2019;242:83–89. doi:10.1016/j.mseb.2019.03.012
  • Sajid MM, Shad NA, Javed Y, et al. Facile synthesis of Zn3(VO4)2/FeVO4 heterojunction and study on its photocatalytic and electrochemical properties. Appl Nanosci. 2020;10:421–433. doi:10.1007/s13204-019-01199-8
  • Ganguly P, Sarkhel R, Das P. Synthesis of pyrolyzed biochar and its application for dye removal: batch, kinetic and isotherm with linear and non-linear mathematical analysis. Surf Interf. 2020;20:100616. doi:10.1016/j.surfin.2020.100616
  • Qiu B, Shao Q, Shi J, et al. Application of biochar for the adsorption of organic pollutants from wastewater: modification strategies, mechanisms and challenges. Sep Purif Technol. 2022: 121925. doi:10.1016/j.seppur.2022.121925
  • Chen J, Wang X, Huang Y, et al. Eng Sci. 2018;5:30–38.
  • Gan L, Yamamoto T, Murakami H. Microstructure and diffusion behavior in the multilayered oxides formed on a Co–W electroplated ferritic stainless steel followed by oxidation treatment. Acta Mater. 2020;194:295–304. doi:10.1016/j.actamat.2020.04.048
  • Dadigala R, Bandi R, Gangapuram BR, et al. Construction of in situ self-assembled FeWO4/g-C3N4 nanosheet heterostructured Z-scheme photocatalysts for enhanced photocatalytic degradation of rhodamine B and tetracycline. Nanoscale Adv. 2019;1:322–333. doi:10.1039/C8NA00041G
  • Narendhran S, Shakila PB, Manikandan M, et al. Spectroscopic investigation on photocatalytic degradation of methyl orange using Fe2O3/WO3/FeWO4 nanomaterials. Spectrochim Acta, Part A. 2020;232:118164. doi:10.1016/j.saa.2020.118164
  • Boudghene Stambouli H, Guenfoud F, Benomara A, et al. Synthesis of FeWO4 heterogeneous composite by the sol–gel process: enhanced photocatalytic activity on malachite green. React Kinet, Mech Catal. 2021;133:563–578. doi:10.1007/s11144-021-01994-x
  • Hastuti B, Mudasir M, Siswanta D, et al. The preparation of polyelectrolyte complexes carboxymethyl chitosan (CMC)-pectin by reflux method as a Pb (II) metal ion adsorbent. In: AIP conference proceedings (Vol. 1710, No. 1); 2016 Feb. AIP Publishing.
  • Ezugwu CI, Sonawane JM, Rosal R. Sep Purif Technol. 2021;284:120246.
  • Nurdin M, Muzakkar MZ, Maulidiyah M, et al. J Mater Env Sci. 2016;7:3334–3343.
  • Munawar T, ur Rehman MN, Nadeem MS, et al. Facile synthesis of Cr-Co co-doped CdO nanowires for photocatalytic, antimicrobial, and supercapacitor applications. J Alloys Compd. 2021;885:160885. doi:10.1016/j.jallcom.2021.160885
  • Verma M, Singh KP, Kumar A. Reactive magnetron sputtering based synthesis of WO3 nanoparticles and their use for the photocatalytic degradation of dyes. Solid State Sci. 2020;99:105847. doi:10.1016/j.solidstatesciences.2019.02.008
  • Sajid MM, Shad NA, Javed Y, et al. Preparation and characterization of vanadium pentoxide (V2O5) for photocatalytic degradation of monoazo and diazo dyes. Surf Interf. 2020:100502. doi:10.1016/j.surfin.2020.100502
  • Zalfani M, Hu Z-Y, Yu W-B, et al. BiVO4/3DOM TiO2 nanocomposites: effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants. Appl Catal, B. 2017;205:121–132. doi:10.1016/j.apcatb.2016.12.019
  • Li N, Wu X, Wang M, et al. Facile preparation of BiVO4/FeVO4 heterostructure for efficient water-splitting applications. Int J Hydrogen Energy. 2019;44:23046–23053. doi:10.1016/j.ijhydene.2019.07.063
  • Sajid MM, Khan SB, Shad NA, et al. Visible light assisted photocatalytic degradation of crystal violet dye and electrochemical detection of ascorbic acid using a BiVO4/FeVO4 heterojunction composite. RSC Adv. 2018;8:23489–23498. doi:10.1039/C8RA03890B
  • Sajid MM, Khan SB, Shad NA, et al. Synthesis of Zn3 (VO4)2/BiVO4 heterojunction composite for the photocatalytic degradation of methylene blue organic dye and electrochemical detection of H2O2. RSC Adv. 2018;8:35403–35412. doi:10.1039/C8RA07320A
  • Sajid MM, Shad NA, Javed Y, et al. Morphological effects on the photocatalytic performance of FeVO4 nanocomposite. Nano-Struct Nano-Objects. 2020;22:100431. doi:10.1016/j.nanoso.2020.100431
  • Sajid MM, Shad NA, Khan SB, et al. Facile synthesis of zinc vanadate Zn3(VO4)2 for highly efficient visible light assisted photocatalytic activity. J Alloys Compd. 2019;775:281–289. doi:10.1016/j.jallcom.2018.10.134
  • Mallikarjunaswamy C, Pramila S, Nagaraju G, et al. Green synthesis and evaluation of antiangiogenic, photocatalytic, and electrochemical activities of BiVO4 nanoparticles. J Mater Sci: Mater Electron. 2021;32:14028–14046. doi:10.1007/s10854-021-05980-w
  • Kong D, El-Bahy ZM, Algadi H, et al. Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv Compos Hybrid Mater. 2022;5:1976–1987. doi:10.1007/s42114-022-00531-1
  • Yang W, Peng D, Kimura H, et al. Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mater. 2022;5:3146–3157. doi:10.1007/s42114-022-00556-6
  • Li J, Zhao Y, Xia M, et al. Highly efficient charge transfer at 2D/2D layered P-La2Ti2O7/Bi2WO6 contact heterojunctions for upgraded visible-light-driven photocatalysis. Appl Catal, B. 2020;261:118244. doi:10.1016/j.apcatb.2019.118244
  • Song B, Wang T, Sun H, et al. Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance. Dalton Trans. 2017;46:15769–15777. doi:10.1039/C7DT03003G
  • Dozzi MV, Marzorati S, Longhi M, et al. Photocatalytic activity of TiO2-WO3 mixed oxides in relation to electron transfer efficiency. Appl Catal, B. 2016;186:157–165. doi:10.1016/j.apcatb.2016.01.004