372
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation on the stability of the Enol Tautomer of Favipiravir and its derivatives by DFT, QTAIM, NBO, NLO and 1H-NMR

& ORCID Icon
Article: 2269663 | Received 25 Aug 2023, Accepted 08 Oct 2023, Published online: 06 Nov 2023

References

  • Furuta Y, Gowen BB, Takahashi K, et al. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res. 2013;100:446. doi:10.1016/j.antiviral.2013.09.015
  • Smyk JM, Majewska A. Favipiravir in the battle with respiratory viruses. Mini Rev Med Chem. 2022;22:2224–2236. doi:10.2174/1389557522666220218122744
  • Konstantinova ID, Andronova VL, Fateev IV, et al. Favipiravir and Its structural analogs: antiviral activity and synthesis methods. Acta Naturae. 2022;14:16–38. doi:10.32607/actanaturae.11652
  • Shiraki K, Daikoku T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol. Ther. 2020;209:107512. doi:10.1016/j.pharmthera.2020.107512
  • Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B. 2017;93:449.
  • Furuta Y, Takahashi K, Shiraki K, et al. T-705 (favipiravir) and related compounds: novel broad-spectrum inhibitors of RNA viral infections. Antiviral Res. 2009;82:95–102. doi:10.1016/j.antiviral.2009.02.198
  • Beak P, Fry FS. Equilibrium between 2-hydroxypyridine and 2-pyridone in the gas phase. J Am Chem Soc 1973;95:1700–1702. doi:10.1021/ja00786a078
  • Katritzky A, Elguero J. The Tautomerism of heterocycles. Advances in Heterocyclic Chemistry. New York: Academic Press; 1976.
  • Elguero J, Katritzky AR, Denisko OV. Prototropic tautomerism of heterocycles: heteroaromatic tautomerism-general overview and methodology. Adv Heterocycl Chem. 2000;76:1–84. doi:10.1016/S0065-2725(00)76003-X
  • Schulman SG, Underberg WJ. Excitation wavelength dependence of prototropic dissociation and tautomerism of salicylamide in the lowest excited singlet state. Photochem Photobiol 1979;29:937–941. doi:10.1111/j.1751-1097.1979.tb07795.x
  • Woolfe GJ, Thistlethwaite PJ. Excited-state prototropic reactivity in salicylamide and salicylanilide. J Am Chem Soc 1980;102:6917–6923. doi:10.1021/ja00543a003
  • Nishiya T, Yamauchi S, Hirota N, et al. Fluorescence studies of intramolecularly hydrogen-bonded o-hydroxya-cetophenone, salicylamide, and related molecules. J Phys Chem. 1986;90:5730–5735. doi:10.1021/j100280a053
  • Kramer HA. Tautomerism by hydrogen transfer in salicylates, triazoles, and oxazoles. Stud Org Chem. 1990;40:654–684.
  • Sobczyk L, Chudoba D, Tolstoy PM, et al. Some brief notes on theoretical and experimental investigations of intramolecular hydrogen bonding. Molecules. 2016;21:1657. doi:10.3390/molecules21121657
  • Antonov L. Favipiravir tautomerism: a theoretical insight. Theor Chem Acc. 2020;139:145.
  • Deneva V, Slavova S, Kumanova A, et al. Favipiravir—tautomeric and complexation properties in solution. Pharmaceuticals. 2023;16:45. doi:10.3390/ph16010045
  • Albarakati R, Al-Qurashi O, Safi Z, et al. A dispersion-corrected DFT calculation on encapsulation of favipiravir drug used as antiviral against COVID-19 into carbon-, boron-, and aluminum-nitride nanotubes for optimal drug delivery systems combined with molecular docking simulations. Struct Chem. 2023: 1. doi:10.1007/s11224-023-02182-4
  • Umar Y. Theoretical studies of the rotational and tautomeric states, electronic and spectroscopic properties of favipiravir and its structural analogues: a potential drug for the treatment of COVID-19. J Taibah Univ Sci. 2020;14:1613–1625. doi:10.1080/16583655.2020.1848982
  • Jena N. Role of different tautomers in the base-pairing abilities of some of the vital antiviral drugs used against COVID-19. Phys Chem Chem Phys. 2020;22:28115–28122. doi:10.1039/D0CP05297C
  • da Silva G. Protonation, tautomerism, and base pairing of the antiviral favipiravir (T-705). 2020.
  • Kavitha N, Alivelu M. Favipiravir Tautomers: a novel investigation of quantum chemical, QTAIM, RDG – NCI, bioactivity, and molecular docking STUDIES. Int J Sci Res Sci Technol. 2021;8:668.
  • Assis LC, de Castro AA, de Jesus JPA, et al. Theoretical insights into the effect of halogenated substituent on the electronic structure and spectroscopic properties of the favipiravir tautomeric forms and its implications for the treatment of COVID-19. La Porta, RSC Advances. 2021;11:35228. doi:10.1039/D1RA06309J
  • Jeffrey GA, Saenger W. Hydrogen bonding in proteins. In: Hydrogen bonding in biological structures. Berlin: Springer; 1991. p. 351–393.
  • Jeffrey GA, Saenger W. The importance of hydrogen bonds. In: Hydrogen bonding in biological structures. Berlin: Springer; 1991. p. 3–14.
  • Bader RFW. A quantum theory of molecular structure and its applications. Chem Rev 1991;91:893–928. doi:10.1021/cr00005a013
  • Bader RF. Atom in molecules a quantum theory (AIM). 1990.
  • Bader RF. Atoms in molecules. Acc Chem Res. 1985;18:9.
  • Afonin AV, Vashchenko AV. Benchmark calculations of intramolecular hydrogen bond energy based on molecular tailoring and function-based approaches: developing hybrid approach. Int J Quantum Chem. 2019;119:e26001. doi:10.1002/qua.26001
  • Grabowski SJ. Intramolecular hydrogen bond energy and its decomposition—O–H···O interactions. Crystals (Basel). 2021;11:5. doi:10.3390/cryst11010005
  • Deshmukh MM, Gadre SR. Molecular tailoring approach for the estimation of intramolecular hydrogen bond energy. Molecules. 2021;26:2928. doi:10.3390/molecules26102928
  • Hammami F, Issaoui N. A DFT study of the hydrogen bonded structures of pyruvic acid–water complexes. Front Phys. 2022;10:901736. doi:10.3389/fphy.2022.901736
  • Safi ZS. Tautomeric study of neutral, protonated and deprotonated isorhodanine based on high level density functional theory. Orient J Chem. 2016;2:2371–2381.
  • Saraf SH, Ghiasi R. Quantum theory of atoms in molecules, electron localization function, and localized-orbital locator investigations on trans-(NHC)PtI2(para-NC5H4X) complexes. J Chem Res. 2020;44:482–486. doi:10.1177/1747519820907243
  • Mata I, Alkorta I, Molins E, et al. Universal features of the electron density distribution in hydrogen-bonding regions: a comprehensive study involving H⋅⋅⋅X (X=H, C, N, O, F, S, Cl, π) interactions. Chem A Eur J. 2010;16:2442–2452. doi:10.1002/chem.200901628
  • Tang T-H, Deretey E, Knak Jensen S, et al. Hydrogen bonds: relation between lengths and electron densities at bond critical points. Eur Phys J D-Atom, Mole, Opt Plasma Phys. 2006;37:217.
  • Espinosa E, Molins E, Lecomte C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett. 1998;285:170–173. doi:10.1016/S0009-2614(98)00036-0
  • Tahir MN, Mirza SH, Khalid M, et al. Synthesis, single crystal analysis and DFT based computational studies of 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrim idin-1-ium 3,4,5-trihydroxybenzoate -methanol (DETM). J Mol Struct. 2019;1180:119–126. doi:10.1016/j.molstruc.2018.11.089
  • Shafiq I, Amanat I, Khalid M, et al. Influence of azo-based donor modifications on nonlinear optical amplitude of D-π-A based organic chromophores: A DFT/TD-DFT exploration. Synth Met. 2023;297:117410), doi:10.1016/j.synt-hmet.2023.117410
  • Safi ZS, Wazzan N. Benchmark calculations of proton affinity and gas-phase basicity using multilevel (G4 and G3B3), B3LYP and MP2 computational methods of para-substituted benzaldehyde compounds. J Comput Chem. 2021;42:1106–1117. doi:10.1002/jcc.26538
  • Khalid M, Ali A, Jawaria R, et al. First principles study of electronic and nonlinear optical properties of A–D–π–A and D–A–D–π–A configured compounds containing novel quinoline–carbazole derivatives. RSC Adv. 2020;10:22273–22283. doi:10.1039/D0RA02857F
  • Yang D, Zhang Q, Song X, et al. Investigation of the intramolecular hydrogen bonding interactions and excited state proton transfer mechanism for both Br-BTN and CN-BTN systems. RSC Adv. 2019;9:23004–23011. doi:10.1039/C9RA04258J
  • Becke AD. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J Chem Phys. 1996;104:1040–1046. doi:10.1063/1.470829
  • Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38:3098–3100. doi:10.1103/PhysRevA.38.3098
  • Lee C, Yang W, Parr R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B: Condens Matter Mater Phys. 1988;37:785–789. doi:10.1103/physrevb.37.785
  • Gaussian09, Frisch MJ, Trucks GW, et al. Wallingford (CT): Gaussian. Inc.; 2009. 121. p. 150–166.
  • Scott AP, Radom L. Harmonic vibrational frequencies: an evaluation of hartree−fock, møller−plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem. 1996;100:16502–16513. doi:10.1021/jp960976r
  • McLean A, Chandler G. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J Chem Phys. 1980;72:5639. doi:10.1063/1.438980
  • Clark T, Chandrasekhar J, Spitznagel GW, et al. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F. J Comput Chem. 1983;4:294–301. doi:10.1002/jcc.540040303
  • Mennucci B, Tomasi J, Cammi R, et al. Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J Phys Chem A. 2002;106:6102–6113. doi:10.1021/jp020124t
  • Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580–592. doi:10.1002/jcc.22885
  • Reed AE, Weinstock RB, Weinhold F. Natural population analysis. J Chem Phys. 1985;83:735–746. doi:10.1063/1.449486
  • William H. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–38. doi:10.1016/0263-7855(96)00018-5
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–38. doi:10.1016/0263-7855(96)00018-5
  • Kelley TWC. gnuplot 5.5 an interactive plotting program. 2004–2021. Available from: http://sourceforge.net/projects/gnuplot
  • Ditchfield R. Self-consistent perturbation theory of diamagnetism. Mol Phys. 1974;27:789–807. doi:10.1080/00268977400100711
  • Wolinski K, Hinton JF, Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J Am Chem Soc 1990;112:8251–8260. doi:10.1021/ja00179a005
  • Garza AJ, Osman OI, Scuseria GE, et al. Nonlinear optical properties of DPO and DMPO: a theoretical and computational study. Theor Chem Acc. 2013;132:1. doi:10.1007/s00214-013-1384-2
  • Yanai T, Tew DP, Handy NC. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett. 2004;393:51–57. doi:10.1016/j.cplett.2004.06.011
  • Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev 2005;105:2999. doi:10.1021/cr9904009
  • Kazemi Z, Ghiasi R, Jamehbozorgi S. Analysis of the interaction between the C20 cage and cis-Ptcl2(NH3)2: a DFT investigation of the solvent effect, structures, properties, and topologies. J Struct Chem. 2018;59:1044–1051. doi:10.1134/S0022476618050050
  • Kazemi Z, Ghiasi R, Jamehbozorgi S. The interaction of 5-fluorouracil with graphene in presence of external electric field: a theoretical investigation. Adsorption. 2020;26:905–911. doi:10.1007/s10450-019-00140-3
  • Shabani M, Ghiasi R, Zare K, et al. The interaction between carboplatin anticancer drug and B12N12 nano-cluster: A computational investigation. Main Group Chem. 2021;20:345–354. doi:10.3233/MGC-210051
  • Ghiasi R, Valizadeh A. Computational investigation of interaction of a cycloplatinated thiosemicarbazone as antitumor and antiparasitic agents with B12N12 nano-cage. Results Chem. 2023;5:100768. doi:10.1016/j.rechem.2023.100768
  • Ghiasi R, Valizadeh A. Interaction of cisplatin anticancer drug with C20 bowl: DFT investigation. Main Group Chem. 2022;21:43–54. doi:10.3233/MGC-210076
  • Ashfaq M, Tahir MN, Kuznetsov A, et al. DFT and single crystal analysis of the pyrimethamine-based novel co-crystal salt: 2,4-diamino-5-(4-chloro-phenyl)-6-ethylpyr-imidin-1-ium:4-hydroxybenzoate:methanol:hydrate(1:1:1:1) (DEHMH). J Mol Struct. 2020;1199:127041. doi:10.1016/j.molstruc.2019.127041
  • Fukui K. Role of frontier orbitals in chemical reactions. Science. 1982:218;747–754.
  • Yang W, Parr RG, Pucci R. Electron density, Kohn–Sham frontier orbitals, and Fukui functions. J Chem Phys. 1984;81:2862–2863. doi:10.1063/1.447964
  • Yang W, Parr RG. Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci USA. 1985;82:6723–6726.
  • Melin J, Aparicio F, Subramanian V, et al. Is the fukui function a right descriptor of hard−hard interactions? J Phys Chem A. 2004;108:2487–2491. doi:10.1021/jp037674r
  • Valizadeh A, Ghiasi R. Theoretical approach to the molecular structure, chemical reactivity, molecular orbital analysis, spectroscopic properties (IR, UV, NMR), and NBO analysis of deferiprone. J Struct Chem. 2017;58:1307–1317. doi:10.1134/S002247661707006X
  • Shalmani GG, Ghiasi R, Marjani A. EDA, CDA and QTAIM investigations in the (para-C5H4X) Ir(PH3)3 Iridabenzene Complexes. Russ J Phys Chem B. 2021;15:S6–S13. doi:10.1134/S1990793121090141
  • Parra RD, Ohlssen J. Cooperativity in intramolecular bifurcated hydrogen bonds: an Ab initio study. J Phys Chem A. 2008;112:3492–3498. doi:10.1021/jp711956u
  • Ziółkowski M, Grabowski SJ, Leszczynski J. Cooperativity in hydrogen-bonded interactions: Ab initio and “atoms in molecules” analyses. J Phys Chem A. 2006;110:6514. doi:10.1021/jp060537k
  • Ghiasi R, Sadeghi N. Evolution of the interaction between C20 cage and Cr(CO)5: a solvent effect, QTAIM and EDA investigation. J Theor Comput Chem. 2017;16:1750007. doi:10.1142/S0219633617500079
  • Raissi H, Jalbout A, Nasseria M, et al. The effect of substitution on the intramolecular hydrogen bonding in 3-hydroxy-propenethial. Int J Quantum Chem. 2008;108:1444–1451. doi:10.1002/qua.21603
  • Raissi H, Khanmohammadi A, Mollania F. A theoretical DFT study on the structural parameters and intramolecular hydrogen-bond strength in substituted (Z)-N-(thioni-trosomethylene)thiohydroxylamine systems. Bull Chem Soc Jpn 2013;86:1261–1271. doi:10.1246/bcsj.20120242
  • Swain CG, Lupton EC. Field and resonance components of substituent effects. J Am Chem Soc 1968;90:4328. doi:10.1021/ja01018a024
  • Shabani M, Ghiasi R, Zare K, et al. Quantum chemical study of interaction between titanocene dichloride anticancer drug and Al12N12 nano-cluster. Russ J Inorg Chem. 2020;65:1726–1734. doi:10.1134/S0036023620110169
  • Zafar F, Mehboob MY, Hussain R, et al. Bromophenol blue doped in nano-droplet: spectroscopy, nonlinear optical properties and Staphylococcus aureus treatment. Opt Quantum Electron. 2021;53:1. doi:10.1007/s11082-020-02634-9
  • Franken PA, Hill AE, Peters CW, et al. Generation of optical harmonics. Phys Rev Lett 1961;7:118–119. doi:10.1103/PhysRevLett.7.118
  • Lin J, Chen C, Choosing a nonlinear crystal. Lasers Opt. 1987:6;59–63.
  • Ullah F, Ayub K, Mahmood T. Remarkable second and third order nonlinear optical properties of organometallic C6Li6–M3O electrides. New J Chem. 2020;44:9822–9829. doi:10.1039/D0NJ01670E
  • Wazzan N. MP2 calculations of the effect of the π-conjugation on the electronic and nonlinear optical properties of para-nitroaniline (pNA) derivatives. Opt Mater (Amst). 2020;110:110465. doi:10.1016/j.optmat.2020.110465
  • Hussain A, Khan MU, Ibrahim M, et al. Structural parameters, electronic, linear and nonlinear optical exploration of thiopyrimidine derivatives: a comparison between DFT/TDDFT and experimental study. J Mol Struct. 2020;1201:127183. doi:10.1016/j.molstruc.2019.127183
  • Khalid M, Arshad MN, Murtaza S, et al. Enriching NLO efficacy via designing non-fullerene molecules with the modification of acceptor moieties into ICIF2F: an emerging theoretical approach. RSC Adv. 2022;12:13412–13427. doi:10.1039/D2RA01127A
  • Tariq S, Raza AR, Khalid M, et al. Synthesis and structural analysis of novel indole derivatives by XRD, spectroscopic and DFT studies. J Mol Struct. 2020;1203:127438. doi:10.1016/j.molstruc.2019.127438
  • Bijani D, Ghiasi R, Baniyaghoob S. DFT investigation of stability, electronic and optical properties of coordination of C20 corannulene to Fe(CO)4. Inorg Chem Commun. 2023;153:110793. doi:10.1016/j.inoche.2023.110793
  • Asadzadeh H, Ghiasi R, Yousefi M, et al. C-PCM study on the electronic and optical properties of Fe(CO)4B12N12 complexes. Main Group Chem. 2023;22:1.
  • Ghiasi R, Rahimi M. Solvent effect on the nonlinear optical property in Cr(CO)3L complexes (L = η6-benzene and η6-graphene): a theoretical study. Russ J Phys Chem B. 2023;17:27–35. doi:10.1134/S1990793123010207