420
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Antimony selenide thin films prepared by thermal evaporation of antimony and selenium elemental sources

ORCID Icon &
Article: 2271232 | Received 10 Mar 2023, Accepted 11 Oct 2023, Published online: 01 Nov 2023

References

  • Zhou Y, Wang L, Chen S, et al. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat Photonics. 2015;9(6):409–415. doi:10.1038/nphoton.2015.78
  • Jackson P, Hariskos D, Wuerz R, et al. Properties of Cu (In, Ga) Se2 solar cells with new record efficiencies up to 21.7%. Phys Status Solidi (RRL)–Rapid Res Lett. 2015;9(1):28–31. doi:10.1002/pssr.201409520
  • Green MA, Dunlop E, Hohl-Ebinger J, et al. Solar cell efficiency tables (version 52). Prog Photovoltaics Res Appl. 2018;26(7):427–436. doi:10.1002/pip.3040
  • Singh P, Ghorai N, Thakur A, et al. Temperature-dependent ultrafast charge carrier dynamics in amorphous and crystalline Sb2Se3 thin films. J Phys Chem C. 2021;125(9):5197–5206. doi:10.1021/acs.jpcc.0c11327
  • Tang R, Chen XY, Liang GX, et al. Magnetron sputtering deposition and selenization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. Surf Coat Technol. 2019;360:68–72. doi:10.1016/j.surfcoat.2018.12.102
  • Kumar V, Artegiani E, Kumar A, et al. Effects of post-deposition annealing and copper inclusion in superstrate Sb2Se3 based solar cells by thermal evaporation. Sol Energy. 2019;193:452–457. doi:10.1016/j.solener.2019.09.069
  • Li Z, Liang X, Li G, et al. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat Commun. 2019;10(1):1–9. doi:10.1038/s41467-018-07882-8
  • Wen X, Chen C, Lu S, et al. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nat Commun. 2018;9(1):1–10. doi:10.1038/s41467-017-02088-w
  • Spalatu N, Krautmann R, Katerski A, et al. Screening and optimization of processing temperature for Sb2Se3 thin film growth protocol: interrelation between grain structure, interface intermixing and solar cell performance. Sol Energy Mater Sol Cells. 2021;225:111045. doi:10.1016/j.solmat.2021.111045
  • Liu X, Chen C, Wang L, et al. Improving the performance of Sb2Se3 thin film solar cells over 4% by controlled addition of oxygen during film deposition. Prog Photovoltaics Res Appl. 2015;23(12):1828–1836. doi:10.1002/pip.2627
  • Liu X, Chen J, Luo M, et al. Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Appl Mater Interfaces. 2014;6(13):10687–10695. doi:10.1021/am502427s
  • Leng M, Luo M, Chen C, et al. Selenization of Sb2Se3 absorber layer: an efficient step to improve device performance of CdS/Sb2Se3 solar cells. Appl Phys Lett. 2014;105(8):083905. doi:10.1063/1.4894170
  • Wang L, Li DB, Li K, et al. Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nature Energy. 2017;2(4):1–9. doi:10.1038/nenergy.2017.46
  • Tiwari KJ, Ren MQ, Vajandar Sk, et al. Mechanochemical bulk synthesis and e-beam growth of thin films of Sb2Se3 photovoltaic absorber. Sol Energy. 2018;160:56–63. doi:10.1016/j.solener.2017.11.074
  • Lai Y, Chen Z, Han C, et al. Preparation and characterization of Sb2Se3 thin films by electrodeposition and annealing treatment. Appl Surf Sci. 2012;261:510–514. doi:10.1016/j.apsusc.2012.08.046
  • Shi X, Tian Y, Shen C, et al. Electrodeposition of Sb2Se3 on indium-doped tin oxides substrate: nucleation and growth. Appl Surf Sci. 2012;258(6):2169–2173. doi:10.1016/j.apsusc.2011.02.097
  • Rodríguez-Lazcano Y, Pena Y, Nair MTS, et al. Polycrystalline thin films of antimony selenide via chemical bath deposition and post deposition treatments. Thin Solid Films. 2005;493(1–2):77–82. doi:10.1016/j.tsf.2005.07.238
  • Maghraoui-Meherzi H, Nasr TB, Dachraoui M. Synthesis, structure and optical properties of Sb2Se3. Mater Sci Semicond Process. 2013;16(1):179–184. doi:10.1016/j.mssp.2012.04.019
  • Choi YC, Mandal TN, Yang WS, et al. Sb2Se3-sensitized inorganic–organic heterojunction solar cells fabricated using a single-source precursor. Angew Chem. 2014;126(5):1353–1357. doi:10.1002/ange.201308331
  • Ngo TT, Chavhan S, Kosta I, et al. Electrodeposition of antimony selenide thin films and application in semiconductor sensitized solar cells. ACS Appl Mater Interfaces. 2014;6(4):2836–2841. doi:10.1021/am405416a
  • Zhou Y, Leng M, Xia Z, et al. Solution-processed antimony selenide heterojunction solar cells. Adv Energy Mater. 2014;4(8):1301846. doi:10.1002/aenm.201301846
  • Choi YC, Lee YH, Im SH, et al. Efficient inorganic-organic heterojunction solar cells employing Sb2 (Sx/Se1-x) 3 graded-composition sensitizers. Adv Energy Mater. 2014;4(7):1301680. doi:10.1002/aenm.201301680
  • Calixto-Rodriguez M, Garcia HM, Nair MTS, et al. Antimony chalcogenide/lead selenide thin film solar cell with 2.5% conversion efficiency prepared by chemical deposition. ECS J Solid State Sci Technol. 2013;2(4):Q69. doi:10.1149/2.027304jss
  • Lokhande C, Sankapal BR, Sartale SD, et al. A novel method for the deposition of nanocrystalline Bi2Se3, Sb2Se3 and Bi2Se3–Sb2Se3 thin films—SILAR. Appl Surf Sci. 2001;182(3–4):413–417. doi:10.1016/S0169-4332(01)00461-5
  • Rajpure K, Bhosale C. Effect of Se source on properties of spray deposited Sb2Se3 thin films. Mater Chem Phys. 2000;62(2):169–174. doi:10.1016/S0254-0584(99)00173-X
  • Lai Y, Han C, LV x, et al. Electrodeposition of antimony selenide thin films from aqueous acid solutions. J Electroanal Chem. 2012;671:73–79. doi:10.1016/j.jelechem.2012.02.018
  • Yang J, Lai Y, Fan Y, et al. Photoelectrochemically deposited Sb2Se3 thin films: deposition mechanism and characterization. RSC Adv. 2015;5(104):85592–85597. doi:10.1039/C5RA16055C
  • Choi YC, Lee DU, Noh JH, et al. Highly improved Sb2Se3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Adv Funct Mater. 2014;24(23):3587–3592. doi:10.1002/adfm.201304238
  • Jackson P, Hariskos D, Lotter E, et al. New world record efficiency for Cu (In, Ga) Se2 thin-film solar cells beyond 20%. Prog Photovoltaics Res Appl. 2011;19(7):894–897. doi:10.1002/pip.1078
  • Speight J. Lange’s handbook of chemistry. New York: McGraw-Hill; 2005.
  • Carcia P, Mclean RS, Reilly MH, et al. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl Phys Lett. 2003;82(7):1117–1119. doi:10.1063/1.1553997
  • Li Z, Chen X, Zhu H, et al. Sb2Se3 thin film solar cells in substrate configuration and the back contact selenization. Sol Energy Mater Sol Cells. 2017;161:190–196. doi:10.1016/j.solmat.2016.11.033
  • Yuan C, Jin X, Jiang G, et al. Sb2Se3 solar cells prepared with selenized dc-sputtered metallic precursors. J Mater Sci: Mater Electron. 2016;27(9):8906–8910. doi:10.1007/s10854-016-4917-3
  • Alamri S, Alsadi M. Growth of Cu (In, Ga) Se2 thin films by a novel single flash thermal evaporation source. J Taibah Univ Science. 2020;14(1):38–43. doi:10.1080/16583655.2019.1701389
  • Alamri S, Almohammadi A. The effect of substrate temperature on Cu (In, Ga) Se2 layers deposited by dual thermal evaporation. J Taibah Univ Sci. 2021;15(1):442–448. doi:10.1080/16583655.2021.1978808
  • Liang G-X, Zhang XH, Ma HL, et al. Facile preparation and enhanced photoelectrical performance of Sb2Se3 nano-rods by magnetron sputtering deposition. Sol Energy Mater Sol Cells. 2017;160:257–262. doi:10.1016/j.solmat.2016.10.042
  • Goyal D, Goyal CP, Ikeda H, et al. Study of CuSbSe2 thin films grown by pulsed laser deposition from bulk source material. Mater Sci Semicond Process. 2021;121:105420. doi:10.1016/j.mssp.2020.105420
  • Ma X, Zhang Z, Wang X, et al. Large-scale growth of wire-like Sb2Se3 microcrystallines via PEG-400 polymer chain-assisted route. J Cryst Growth. 2004;263(1-4):491–497. doi:10.1016/j.jcrysgro.2003.11.004
  • Tang R, Chen S, Zheng ZH Heterojunction annealing enabling record open-circuit voltage in antimony triselenide solar cells. Adv Mater. 2022;34(14):2109078. doi:10.1002/adma.202109078