232
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Kink, periodic and solitary solutions for coupled Benjamin–Bona–Mahony–KdV system

& ORCID Icon
Article: 2271236 | Received 08 Dec 2022, Accepted 11 Oct 2023, Published online: 26 Oct 2023

References

  • Boussinesq J. Thorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J Math Pures Appl. 1872;17:55–108.
  • Benjamin TB, Bona JL, Mahony JJ. Model equations for long waves in nonlinear dispersive systems. Philos Trans R Soc B Biol Sci. 1972;272(1220):47–78.
  • Raslan KR, Ali KK, Danaf TS. Numerical treatment for the coupled-BBM system. J Modern Methods Numer Math. 2016;7(2):67–79. doi: 10.20454/jmmnm.2016.1093
  • Kumar V. Modified (G′/G)-expansion method for finding traveling wave solutions of the coupled Benjamin-Bona-Mahony-kdv equation. J Ocean Eng Sci. 2019;4(3):252–255. doi: 10.1016/j.joes.2019.04.008
  • Raslan KR, Ali KK, Danaf TS. An efficient approach to numerical study of the coupled-bbm system with b-spline collocation method. Commun Math Model Appl. 2016;1(3):5–15.
  • Wu WJ, Manafian J, Ali KK, et al. Numerical and analytical results of the 1D BBM equation and 2D coupled BBM-system by finite element method. Int J Modern Phys. 2022;36(28):2250201. doi: 10.1142/S0217979222502010
  • Antonopoulos DC, Dougalis VA, Mitsotakis DE. Numerical solution of Boussinesq systems of the Bona-Smith family. Appl Numer Math. 2010;60(4):314–336. doi: 10.1016/j.apnum.2009.03.002
  • Dougalis VA, Mitsotakis DE, Saut JC. Boussinesq system of Bona-Smith type on plane domains: theory and numerical analysis. J Sci Comput. 2010;44:109–135. doi: 10.1007/s10915-010-9368-z
  • Karakoc SBG, Bhowmik SK. Galerkin finite element solution for Benjamin-Bona-Mahony-Burgers equation with cubic B-Splines. Comput Math Appl. 2019;77(7):1917–1932.
  • Yagmurlu NM, Uçar Y, Çelikkaya İ. Higher order splitting method for numerical solution of nonlinear coupled system viscous burger's equation. Konuralp J Math. 2020;8(2):234–243.
  • Tasbozan O. Approximate analytical solutions of fractional coupled mKdV equation by homotopy analysis method. Open J Appl Sci. 2012;02(03):193–197. doi: 10.4236/ojapps.2012.23029
  • Aziz N, Ali K, Seadawy AR, et al. Discussion on couple of nonlinear models for lie symmetry analysis, self adjointees, conservation laws and soliton solutions. Opt Quantum Electron. 2023;55(3):201. doi: 10.1007/s11082-022-04416-x
  • Yin JL, Tian LX. Classification of the travelling waves in the nonlinear dispersive kdV equation. Nonlinear Anal. 2010;73(2):465–470. doi: 10.1016/j.na.2010.03.039
  • Nguetcho AST, Li JB, Bilbault JM. Global dynamical behaviors in a physical shallow water system. Commun Nonlinear Sci Numer Simul. 2016;36:285–302. doi: 10.1016/j.cnsns.2015.12.006
  • Li JB, Zhang Y. Solitary wave and chaotic behavior of traveling wave solutions for the coupled kdV equations. Appl Math Comput. 2011;218(5):1794–1797.
  • Seadawy AR, Rizvi STR, Ahmed S. Analytical solutions along with grey-black optical solitons under the influence of self-steepening effect and third order dispersion. Opt Quantum Electron. 2023;55(3):288. doi: 10.1007/s11082-023-04559-5
  • Seadawy AR, Rizvi STR, Ahmed S, et al. Propagation of W-shaped and M-shaped solitons with multi-peak interaction for ultrashort light pulse in fibers. Opt Quantum Electron. 2023;55(3):221. doi: 10.1007/s11082-022-04478-x
  • Seadawy AR, Rizvi STR, Ahmad A. Study of non-local Boussinesq dynamical equation for multiwave, homoclinic breathers and other rational solutions. Opt Quantum Electron. 2023;55(3):278. doi: 10.1007/s11082-023-04550-0
  • Seadawy AR, Rizvi STR, Shabbir S, et al. Study of localized waves for couple of the nonlinear Schrödinger dynamical equations. Int J Modern Phys B. 2023;37(05):2350047. doi: 10.1142/S0217979223500479
  • Zhang YS, Rao JG, Cheng Y, et al. Riemann-Hilbert method for the Wadati-Konno-Ichikawa equation: N simple poles and one higher-order pole. Phys D: Nonlinear Phenom. 2019;399(1):173–185. doi: 10.1016/j.physd.2019.05.008
  • Gurefe Y, Sonmezoglu A, Misirli E. Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics. Pramana. 2011;77(6):1023–1029. doi: 10.1007/s12043-011-0201-5
  • Du XH. An irrational trial equation method and its applications. Pramana, J Phys. 2010;75(3):415–422. doi: 10.1007/s12043-010-0127-3
  • Gepreel KA. Extended trial equation method for nonlinear coupled Schrodinger Boussinesq partial differential equations. J Egypt Math Soc. 2016;24(3):381–391. doi: 10.1016/j.joems.2015.08.007
  • Rizvi STR, Seadawy AR, Ahmed S, et al. Einstein's vacuum field equation: lumps, manifold periodic, generalized breathers, interactions and rogue wave solutions. Opt Quantum Electron. 2023;55(2):181. doi: 10.1007/s11082-022-04451-8
  • Seadawy AR, Rizvi STR, Ahmed S, et al. Lump solutions, Kuznetsov-Ma breathers, rogue waves and interaction solutions for magneto electro-elastic circular rod. Chaos Solitons Fract. 2022;163:112563. doi: 10.1016/j.chaos.2022.112563
  • Wang KJ, Liu JH, Si J, et al. N-Soliton, breather, lump solutions and diverse traveling wave solutions of the fractional (2+1)-dimensional Boussinesq equation. Fractals. 2023;31(03):2350023. doi: 10.1142/S0218348X23500238
  • Younas U, Seadawy AR, Younis M, et al. Construction of analytical wave solutions to the conformable fractional dynamical system of ion sound and Langmuir waves. Waves Random Complex Media. 2022;32(6):2587–2605. doi: 10.1080/17455030.2020.1857463
  • Wang KJ, Liu JH. Diverse optical solitons to the nonlinear Schrödinger equation via two novel techniques. Eur Phys J Plus. 2023;138(1):74. doi: 10.1140/epjp/s13360-023-03710-1
  • Wang KJ. A fast insight into the optical solitons of the generalized third-order nonlinear Schrödinger's equation. Res Phys. 2022;40:105872.
  • Khan K, Akbar MA. Traveling wave solutions of nonlinear evolution equations via the enhanced (G′/G)-expansion method. J Egypt Math Soc. 2014;22(2):220–226. doi: 10.1016/j.joems.2013.07.009
  • Zhang S. Application of exp-function method to high-dimensional nonlinear evolution equation. Chaos, Solitons & Fractals. 2008;38(1):270–276. doi: 10.1016/j.chaos.2006.11.014
  • Rizvi STR, Seadawy AR, Younis M, et al. Optical dromions for complex Ginzburg Landau model with nonlinear media. Appl Math A J Chin Universities. 2023;38(1):111–125. doi: 10.1007/s11766-023-4044-x
  • Rizvi STR, Seadawy AR, Ahmed S, et al. Optical soliton solutions and various breathers lump interaction solutions with periodic wave for nonlinear Schrödinger equation with quadratic nonlinear susceptibility. Opt Quantum Electron. 2023;55(3):286. doi: 10.1007/s11082-022-04402-3
  • Rizvi STR, Seadawy AR, Naqvi SK, et al. Study of mixed derivative nonlinear Schrödinger equation for rogue and lump waves, breathers and their interaction solutions with Kerr law. Opt Quantum Electron. 2023;55(2):177. doi: 10.1007/s11082-022-04415-y
  • Batool T, Seadawy AR, Rizvi STR, et al. Optical multi-wave, M-shaped rational solution, homoclinic breather, periodic cross-kink and various rational solutions with interactions for radhakrishnan-Kundu-Lakshmanan dynamical model. J Nonlinear Opt Phys Mater. 2023;32(02):2350015. doi: 10.1142/S0218863523500157
  • Rizvi STR, Seadawy AR, Raza U. Some advanced chirped pulses for generalized mixed nonlinear Schrödinger dynamical equation. Chaos, Solitons & Fractals. 2022;163:112575. doi: 10.1016/j.chaos.2022.112575
  • Wang KJ, Si J. Diverse optical solitons to the complex Ginzburg-Landau equation with Kerr law nonlinearity in the nonlinear optical fiber. Eur Phys J Plus. 2023;138(3):187. doi: 10.1140/epjp/s13360-023-03804-w
  • Wang KJ, Shi F, Wang GD. Abundant soliton structures to the (2+1)-Dimensional heisenberg ferromagnetic spin chain dynamical model. Adv Math Phys. 2023;2023:4348758.
  • Wang KJ. Diverse wave structures to the modified Benjamin-Bona-Mahony equation in the optical illusions field. Modern Phys Lett B. 2023;37:2350012. doi: 10.1142/S0217984923500124
  • Inan IE, Inc M, Martinez HY, et al. Extended exp(−φ(ξ))-expansion method for some exact solutions of (2+1) and (3+1)-dimensional constant coefficients kdV equations. J Ocean Eng Sci. 2022.
  • Arshed S. New soliton solutions to the perturbed nonlinear Schrödinger equation by exp(−ϕ(ξ))-expansion method. Optik. 2020;220:165123. doi: 10.1016/j.ijleo.2020.165123
  • Akbulut A, Kaplan M, Tascan F. The investigation of exact solutions of nonlinear partial differential equations by using exp(−ϕ(ξ)) method. Optik. 2017;132:382–387. doi: 10.1016/j.ijleo.2016.12.050
  • Ahmed MS, Zaghrout AAS, Ahmed HM. Travelling wave solutions for the doubly dispersive equation using improved modified extended tanh-function method. 2022;61(10):7987–7994.
  • Karakoc SBG, Ali KK. Theoretical and computational structures on solitary wave solutions of Benjamin Bona Mahony-Burgers equation. Tbil Math J. 2021;14(2):33–50.
  • Bashar H, Rista TT, Shahen NHM. Application of the advanced exp (−ϕ(ξ))-Expansion method to the nonlinear conformable time-Fractional partial differential equations. Turk J Math Comput Sci. 2021;13(1):68–80.
  • Alam LMB, Jiang XF, Mamun AA. Exact and explicit traveling wave solution to the time-fractional phi-four and (2+1) dimensional CBS equations using the modified extended tanh-function method in mathematical physics. Partial Differ Equ Appl Math. 2021;4:100039. doi: 10.1016/j.padiff.2021.100039
  • Hubert MB, Betchewe G, Doka SY, et al. Soliton wave solutions for the nonlinear transmission line using the Kudryashov method and the (G′/G)-expansion method. Appl Math Comput. 2014;239:299–309.