878
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Risk assessment of potentially toxic elements in street dust from Mahd Ad Dhahab gold mine, Saudi Arabia

ORCID Icon
Article: 2281067 | Received 28 Feb 2023, Accepted 03 Nov 2023, Published online: 21 Nov 2023

References

  • Siegel FR. Environmental geochemistry of potentially toxic metals. Vol. 32. Berlin: springer; 2002.
  • Ali H, Khan E. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’ – proposal of a comprehensive definition. Toxicol Environ Chem. 2018;100(1):6–19.
  • Agbasi JC, Egbueri JC. Assessment of PTEs in water resources by integrating HHRISK code, water quality indices, multivariate statistics, and ANNs. Geocarto Int. 2022;37(25):10407–10433.
  • Ayejoto DA, Agbasi JC, Egbueri JC, et al. Assessment of oral and dermal health risk exposures associated with contaminated water resources: an update in Ojoto area, southeast Nigeria. Int J Environ Anal Chem. 2022: 1–21. doi: 10.1080/03067319.2021.2023515
  • Agbasi JC, Chukwu CN, Nweke ND, et al. Water pollution indexing and health risk assessment due to PTE ingestion and dermal absorption for nine human populations in Southeast Nigeria. Groundwater for Sustainable Development. 2023;21:100921.
  • Nieder R, Benbi DK, Reichl FX, et al.. Role of potentially toxic elements in soils. In: Nieder R, Benbi DK, Reichl FX, editors. Soil components and human health. Dordrecht (Netherlands): Springer; 2018. p. 375–450.
  • Khatita A, Koch AM, & Bamousa R, et al. Sources identification and contamination assessment of heavy metals in soil of Middle Nile Delta. Egypt. J Taibah Univ Sci. 2020;14(1):750–761.
  • Omeka ME, Egbueri JC. Hydrogeochemical assessment and health-related risks due to toxic element ingestion and dermal contact within the Nnewi-Awka urban areas, Nigeria. Environ Geochem Health. 2023;45(5):2183–2211.
  • Tchounwou PB, Yedjou CG, Patlolla AK, et al. Heavy metal toxicity and the environment. Mol, Clin Environ Toxicol. 2012;101:133–164.
  • Jaishankar M, Tseten T, Anbalagan N, et al. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7(2):60.
  • Wu YG, Xu YN, Zhang JH, et al. Evaluation of ecological risk and primary empirical research on heavy metals in polluted soil over Xiaoqinling gold mining region, Shaanxi, China. Trans Nonferrous Metals Soc China. 2010;20(4):688–694.
  • Bempah CK, Ewusi A. Heavy metals contamination and human health risk assessment around Obuasi gold mine in Ghana. Environ Monit Assess. 2016;188(5):1–13.
  • Xiao R, Wang S, Li R, et al. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol Environ Saf. 2017;141:17–24.
  • Ogundele LT, Oluwajana OA, Ogunyele AC, et al. Heavy metals, radionuclides activity and mineralogy of soil samples from an artisanal gold mining site in Ile-Ife. Nigeria: implications on human and environmental health. Environ Earth Sci. 2021;80(5):1–15.
  • Ogola JS, Mitullah WV, Omulo MA. Impact of gold mining on the environment and human health: a case study in the Migori gold belt, Kenya. Environ Geochem Health. 2002;24(2):141–157.
  • Yang J, Ma S, Zhou J, et al. Heavy metal contamination in soils and vegetables and health risk assessment of inhabitants in Daye, China. J Int Med Res. 2018;46(8):3374–3387.
  • Kinuthia GK, Ngure V, Beti D, et al. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Sci Rep. 2020;10(1):1–13.
  • Zhang C, Qiao Q, Appel E, et al. Discriminating sources of anthropogenic heavy metals in urban street dusts using magnetic and chemical methods. J Geochem Explor. 2012;119:60–75.
  • Gyamfi E, Appiah-Adjei EK, Adjei KA. Potential heavy metal pollution of soil and water resources from artisanal mining in Kokoteasua, Ghana. Groundwater for Sustainable Development. 2019;8:450–456.
  • Saeedi M, Li LY, Salmanzadeh M. Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. J Hazard Mater. 2012;227:9–17.
  • Ambrosino M, El-Saadani Z, Abu Khatita A, et al. Geochemical speciation, ecological risk and assessment of main sources of potentially toxic elements (PTEs) in stream sediments from Nile River in Egypt. Water. 2023;15(13):2308.
  • Meza-Figueroa D, Maier RM, de la O-Villanueva M, et al. The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, Mexico. Chemosphere. 2009;77(1):140–147.
  • Liu G, Wang J, Zhang E, et al. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China. Environ Sci Pollut Res. 2016;23:8709–8720.
  • Ming-Kai QU, Wei-Dong LI, Zhang CR, et al. Source apportionment of heavy metals in soils using multivariate statistics and geostatistics. Pedosphere. 2013;23(4):437–444.
  • Wang Y, Duan X, Wang L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: case study in Jiangsu Province. Sci Total Environ. 2020;710:134953.
  • Li Y, Feng D, Ji M, et al. The risk characteristics of heavy metals in urban soil of typical developed cities in China. Environ Monit Assess. 2022;194(2):1–11.
  • Yang T, Liu Q, Li H, et al. Anthropogenic magnetic particles and heavy metals in the road dust: magnetic identification and its implications. Atmos Environ. 2010;44(9):1175–1185.
  • Wang G, Oldfield F, Xia D, et al. Magnetic properties and correlation with heavy metals in urban street dust: a case study from the city of Lanzhou, China. Atmos Environ. 2012;46:289–298.
  • Abu Khatita AM, de Wall H, Koch R. Anthropogenic particle dispersions in topsoils of the Middle Nile Delta: a preliminary study on the contamination around industrial and commercial areas in Egypt. Environ Earth Sci. 2016;75(3):1–19.
  • Wang G, Chen J, Zhang W, et al. Magnetic properties of street dust in Shanghai, China and its relationship to anthropogenic activities. Environ Pollut. 2019;255:113214.
  • Pérez I, Romero FM, Zamora O, et al. Magnetic susceptibility and electrical conductivity as a proxy for evaluating soil contaminated with arsenic, cadmium and lead in a metallurgical area in the San Luis Potosi State, Mexico. Environ Earth Sci. 2014;72(5):1521–1531.
  • Rachwał M, Kardel K, Magiera T, et al. Application of magnetic susceptibility in assessment of heavy metal contamination of Saxonian soil (Germany) caused by industrial dust deposition. Geoderma. 2017;295:10–21.
  • Guda AM, El-Hemaly IA, Aal EA, et al. Suitability of magnetic proxies to reflect complex anthropogenic spatial and historical soil heavy metal pollution in the southeast Nile delta. Catena. 2020;191:104552.
  • Shetaia SA, Khatita AMA, Abdelhafez NA, et al. Human-induced sediment degradation of Burullus lagoon, Nile Delta, Egypt: heavy metals pollution status and potential ecological risk. Mar Pollut Bull. 2022;178:113566.
  • Al-Hobaib AS, Al-Jaseem KQ, Baioumy HM, et al. Environmental impact assessment inside and around Mahd Ad Dhahab gold mine, Saudi Arabia. Arab J Geosci. 2011;5(5):985–997.
  • Farahat A, Chauhan A, Al Otaibi M, et al. Air quality over major cities of Saudi Arabia during hajj periods of 2019 and 2020. Earth Syst Environ. 2021;5:101–114.
  • Al-Farraj AS, Al-Otabi TG, Al-Wabel MI. Accumulation coefficient and translocation factor of heavy metals through Ochradenus baccatus plant grown on mining area at Mahad AD’Dahab, Saudi Arabia. WIT Trans Ecol Environ. 2009;122:459–468.
  • Kawashty SA, Soliman HM, Boquellah NA. Chemical and biological characterize of some species from Mahdadh Dhahab region. J Innov Appl Pharmaceut Sci. 2016;1(3):62–70.
  • Al-Hobaib AS, Al-Jaseem QK, Baioumy HM, et al. Heavy metals concentrations and usability of groundwater at Mahd Ad Dhahab gold mine, Saudi Arabia. Arab J Geosci. 2013;6(1):259–270.
  • Al-Farraj AS, Usman AR, Al Otaibi SH. Assessment of heavy metals contamination in soils surrounding a gold mine: comparison of two digestion methods. Chem Ecol. 2013;29(4):329–339.
  • Abdelhaffez G. Studying the effect of ore texture on the Bond Work Index at the Mahd Ad Dahab Gold Mine: a case study. Rudarsko-geološko-naftni zbornik. 2020;35(1).
  • El-Shafei SA, Abdel-Maksoud KM, Helmy HM, et al. Geology, mineralogy and genesis of the world-class Mahd Ad Dhahab epithermal Au-(Ag)-telluride deposit, Kingdom of Saudi Arabia. J Asian Earth Sci. 2020;201:104510.
  • Al-Jarash MA. The climatic water balance in Saudi Arabia 1970–1986. Scientific Publishing Centre, King Abdulaziz University, Jeddah, Saudi Arabia, 1989; 441 pp.
  • Faisal KZ, Osama MK. Hydrological characterization of Mahd Ad Dahab gold mine, Saudi Arabia. International Journal of Physical Sciences. 2012;7(22):2935–2943.
  • Al-Amri NS, Subyani AM. Analysis of rainfall, missing data, frequency and PMP in Al-Madinah Area, Western Saudi Arabia. In: Khomsi S, Roure F, Al-Garni MA, et al., editors. Arabian plate and surroundings: geology, sedimentary basins and georesources. Cham: Springer; 2020. p. 235–248.
  • Abu Khatita AM, Shaker IM, Shetaia SA. Urbanization and human activities around Manzala Lake, Egypt: studies on heavy metal distribution and environmental impacts. Sedimentol. Egypt. 2015;22:69–83.
  • Dankoub Z, Ayoubi S, Khademi H, et al. Spatial distribution of magnetic properties and selected heavy metals in calcareous soils as affected by land use in the Isfahan region, Central Iran. Pedosphere. 2012;22(1):33–47.
  • Norouzi S, Khademi H, Cano AF, et al. Biomagnetic monitoring of heavy metals contamination in deposited atmospheric dust, a case study from Isfahan, Iran. J Environ Manag. 2016;173:55–64.
  • Wu Q, Hu W, Wang H, et al. Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China. Sci Total Environ. 2021;780:146557.
  • Zoller WH, Gladney ES, Duce RA. Atmospheric concentrations and sources of trace metals at the South Pole. science. 1974;183(4121):198–200.
  • Bhuiyan MA, Parvez L, Islam MA, et al. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J Hazard Mater. 2010;173(1-3):384–392.
  • Rajaram BS, Suryawanshi PV, Bhanarkar AD, et al. Heavy metals contamination in road dust in Delhi city. India. Environmental Earth Sciences. 2014;72:3929–3938.
  • Harb MK, Ebqa’ai M, Al-rashidi A, et al. Investigation of selected heavy metals in street and house dust from Al-Qunfudah, Kingdom of Saudi Arabia. Environ Earth Sci. 2015;74:1755–1763.
  • Wedepohl KH. The composition of the continental crust. Geochim Cosmochim Acta. 1995;59(7):1217–1232.
  • Lu XW, Li LY, Wang LJ, et al. Contamination assessment of mercury and arsenic in roadway dust from Baoji, China. Atmos. Environ. 2009;43:2489–2496.
  • Ma L, Xiao T, Ning Z, et al. Pollution and health risk assessment of toxic metal (loid) s in soils under different land use in sulphide mineralized areas. Sci Total Environ. 2020;724:138176.
  • Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980;14(8):975–1001.
  • Covre WP, Ramos SJ, da Silveira Pereira WV, et al. Impact of copper mining wastes in the Amazon: properties and risks to environment and human health. J Hazard Mater. 2022;421:126688.
  • US EPA. Risk assessment guidance for Superfund, Vol. I: Human health evaluation manual. Office of Solid Waste and Emergency Response EPA/540/1-89/002; 1989.
  • USEPA. Child-Specic Exposure Factors Handbook. National Center for Environmental Assessment EPA-600-P-00-002B; 2001a.
  • Kamunda C, Mathuthu M, Madhuku M. Health risk assessment of heavy metals in soils from Witwatersrand Gold Mining Basin, South Africa. Int J Environ Res Public Health. 2016;13(7):663.
  • U.S. Environmental Protection Agency. Recommended use of BW3/4 as the default method in derivation of the Oral Reference Dose. Available online: http://www.epa.gov/raf/publications/pdfs/recommended-use-of-bw34.pdf
  • US EPA. Risk assessment guidance for superfund: Vol. III-part A. Process for conducting probabilistic risk assessment. Office of Emergency and Remedial Response EPA-540-R-02-002; 2001.
  • Guney M, Zagury GJ, Dogan N, et al. Exposure assessment and risk characterization from trace elements following soil ingestion by children exposed to playgrounds, parks and picnic areas. J Hazard Mater. 2010;182(1-3):656–664.
  • Vu Duc T, Thi Lan CD, Ngo Tra M. Residue of selected persistent organic pollutants (POPs) in soil of some areas in Vietnam. IntechOpen; 2020.
  • Chan LS, Ng SL, Davis AM, et al. Magnetic properties and heavy-metal contents of contaminated seabed sediments of Penny’s Bay, Hong Kong. Mar Pollut Bull. 2001;42(7):569–583.
  • Dytłow S, Górka-Kostrubiec B. Concentration of heavy metals in street dust: an implication of using different geochemical background data in estimating the level of heavy metal pollution. Environ Geochem Health. 2021;43(1):521–535.
  • Shabbaj II, Alghamdi MA, Shamy M, et al. Risk assessment and implication of human exposure to road dust heavy metals in Jeddah, Saudi Arabia. Int J Environ Res Public Health. 2018;15(1):36.
  • Aminiyan MM, Baalousha M, Mousavi R, et al. The ecological risk, source identification, and pollution assessment of heavy metals in road dust: a case study in Rafsanjan, SE Iran. Environ Sci Pollut Res. 2018;25:13382–13395.
  • Kexin L, Tao L, Lingqing W, et al. Contamination and health risk assessment of heavy metals in road dust in Bayan Obo; 2015.
  • Tang ZW, Chai M, Cheng JL, et al. Contamination and health risks of heavy metals in street dust from a coal-mining city in eastern China. Ecotoxicol Environ Saf 2017;138:83–91.
  • Ma Z, Chen K, Li Z, et al. Heavy metals in soils and road dusts in the mining areas of Western Suzhou, China: a preliminary identification of contaminated sites. J Soils Sediments. 2016;16:204–214.
  • Mahato MK, Singh AK, Giri S. Assessment of metal pollution and human health risks in road dust from mineral rich zone of East Singhbhum, India. Environ Geochem Health. 2023;45(5):2291–2308.
  • Pathak AK, Yadav S, Kumar P, et al. Source apportionment and spatial–temporal variations in the metal content of surface dust collected from an industrial area adjoining Delhi, India. Sci Total Environ. 2013;443:662–672.
  • Rout TK, Masto RE, Ram LC, et al. Assessment of human health risks from heavy metals in outdoor dust samples in a coal mining area. Environ Geochem Health. 2013;35:347–356.
  • Wang HZ, Cai LM, Wang QS, et al. A comprehensive exploration of risk assessment and source quantification of potentially toxic elements in road dust: a case study from a large Cu smelter in central China. Catena. 2021;196:104930.
  • Huang CC, Cai LM, Xu YH, et al. A comprehensive exploration on the health risk quantification assessment of soil potentially toxic elements from different sources around large-scale smelting area. Environ Monit Assess. 2022;194(3):20.
  • Huang CC, Cai LM, Xu YH, et al. Quantitative analysis of ecological risk and human health risk of potentially toxic elements in farmland soil using the PMF model. Land Degrad Dev. 2022;33(11):1954–1967.
  • Odukoya AM, Akinwunmi SM, Watts MJ. Contamination and hazard risk assessment of potentially toxic elements in Road Dust Lagos, Southwest, Nigeria. Chem Africa. 2021;4:1015–1030.
  • Konstantinova E, Minkina T, Konstantinov A, et al. Pollution status and human health risk assessment of potentially toxic elements and polycyclic aromatic hydrocarbons in urban street dust of Tyumen city, Russia. Environ Geochem Health. 2022;44(2):409–432.
  • Liu X, Zhai Y, Zhu Y, et al. Mass concentration and health risk assessment of heavy metals in size-segregated airborne particulate matter in Changsha. Sci Total Environ. 2015;517:215–221.
  • Ullah I, Ditta A, Imtiaz M, et al. Assessment of health and ecological risks of heavy metal contamination: a case study of agricultural soils in Thall, Dir-Kohistan. Environ Monit Assess. 2020;192:1–19.
  • Karim Z, Qureshi BA. Health risk assessment of heavy metals in urban soil of Karachi, Pakistan. Human and Ecol Risk Assessment: An Int J. 2014;20(3):658–667.
  • Abu Khatita AM. Assessment of soil and sediment contamination in the Middle Nile Delta area (Egypt)-Geo-Environmental study using combined sedimentological, geophysical and geochemical methods. Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany); 2011.
  • Gay JR, Korre A. A spatially-evaluated methodology for assessing risk to a population from contaminated land. Environ Pollut. 2006;142(2):227–234.
  • Baker DE, Senft JP. Cooper-heavy metal in soils. Blackflies Academic and Professional, London. 1995;8:224–243.
  • Nordberg GF, Bernard A, Diamond GL, et al. Risk assessment of effects of cadmium on human health (IUPAC Technical Report). Pure Appl Chem. 2018;90(4):755–808.
  • Nordberg GF, Costa M., editors. Handbook on the toxicology of metals: volume I: general considerations. 5th ed. Academic press; 2021. doi: 10.1016/C2019-0-04906-0
  • Mason LH, Harp JP, Han DY. Pb neurotoxicity: neuropsychological effects of lead toxicity. BioMed Res Int. 2014;2014:1–8.
  • Gump BB, Stewart P, Reihman J, et al. Prenatal and early childhood blood lead levels and cardiovascular functioning in 912 year old children. Neurotoxicol Teratol. 2005;27(4):655–665.
  • Bradl H., editor. Heavy metals in the environment: origin, interaction and remediation. London: Elsevier; 2005.
  • Hossain MB, Ahmed ASS, Sarker M, et al. Human health risks of Hg, As, Mn, and Cr through consumption of fish, Ticto barb (Puntius ticto) from a tropical river, Bangladesh. Environ Sci Pollut Res. 2018;25(31):31727–31736.
  • Kusin FM, Azani NNM, Hasan SNMS, et al. Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. Catena. 2018;165:454–464.
  • Huang HW, Lee CH, Yu HS. Arsenic-induced carcinogenesis and immune dysregulation. Int J Environ Res Public Health. 2019;16(15):2746.
  • Egbueri JC, Ukah BU, Ubido OE, et al. A chemometric approach to source apportionment, ecological and health risk assessment of heavy metals in industrial soils from southwestern Nigeria. Int J Environ Anal Chem. 2022;102(14):3399–3417.