755
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Silver-modification of ZnO thin films deposited on Zn-electroplated Cu substrate by thermal shock method for the enhanced photocatalytic performance

, , , &
Article: 2285079 | Received 11 Sep 2023, Accepted 14 Nov 2023, Published online: 27 Nov 2023

References

  • Nagasundari SM, Muthu K, Kaviyarasu K, et al. Current trends of silver doped zinc oxide nanowires photocatalytic degradation for energy and environmental application. Surf Interfaces. 2021;23:100931, doi:10.1016/j.surfin.2021.100931
  • Ifijen HI, Maliki M, Anegbe B. Synthesis, photocatalytic degradation and antibacterial properties of selenium or silver doped zinc oxide nanoparticles: a detailed review. OpenNano. 2022;8:100082, doi:10.1016/j.onano.2022.100082
  • Rajput RB, Shaikh R, Sawant J, et al. Recent developments in ZnO-based heterostructures as photoelectrocatalysts for wastewater treatment: a review. Environ Adv. 2022;9:100264, doi:10.1016/j.envadv.2022.100264
  • Chen KH, Pu YC, Chang KD, et al. Ag-nanoparticle-decorated SiO2 nanospheres exhibiting remarkable plasmon-mediated photocatalytic properties. J Phys Chem C. 2012;116(35):19039–19045. doi:10.1021/jp306555j
  • Deng Q, Duan X, Ng DHL, et al. Ag nanoparticle decorated nanoporous ZnO microrods and their enhanced photocatalytic activities. ACS Appl Mater Interfaces. 2012;4(11):6030–6037. doi:10.1021/am301682g
  • Kareem MA, Bello IT, Shittu HA, et al. Synthesis, characterization, and photocatalytic application of silver doped zinc oxide nanoparticles. Clean Mater. 2022;3:100041, doi:10.1016/j.clema.2022.100041
  • Sabry RS, Aziz WJ, Rahmah MI. Employed silver doping to improved photocatalytic properties of ZnO micro/nanostructures. J Inorg Organomet Polym. 2020;30:4533–4543. doi:10.1007/s10904-020-01661-z
  • Onkani SP, Diagboya PN, Mtunzi FM, et al. Comparative study of the photocatalytic degradation of 2–chlorophenol under UV irradiation using pristine and Ag-doped species of TiO2, ZnO and ZnS photocatalysts. J Environ Manage. 2020;260:110145, doi:10.1016/j.jenvman.2020.110145
  • Zhu X, Wang J, Yang D, et al. Fabrication, characterization and high photocatalytic activity of Ag–ZnO heterojunctions under UV-visible light. RSC Adv. 2021;11(44):27257–27266. doi:10.1039/D1RA05060E
  • Turkyılmaz SS, Guy N, Ozacar M. Photocatalytic efficiencies of Ni, Mn. Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between ZnO and metals. J Photochem Photobiol A. 2017;341:39–50. doi:10.1016/j.jphotochem.2017.03.027
  • Rahmah MI, Majdi HS, WK A-A, et al. Synthesis of ZnO/Ag-doped C/N heterostructure for photocatalytic application. Int J Mod Phys B. 2023;37(24):2350239, doi:10.1142/S0217979223502399
  • Choudhary MK, Kataria J, Bhardwajc VK, et al. Green biomimetic preparation of efficient Ag–ZnO heterojunctions with excellent photocatalytic performance under solar light irradiation: a novel biogenic-deposition-precipitation approach. Nanoscale Adv. 2019;1(3):1035–1044. doi:10.1039/C8NA00318A
  • Nguyen HTP, Nguyen TMT, Hoang CN, et al. Characterization and photocatalytic activity of new photocatalysts based on Ag, F-modified ZnO nanoparticles prepared by thermal shock method. Arab J Chem. 2020;13(1):1837–1847. doi:10.1016/j.arabjc.2018.01.018
  • Thongsuriwong K, Amornpitoksuk P, Suwanboon S. Photocatalytic and antibacterial activities of Ag-doped ZnO thin films prepared by a sol–gel dip-coating method. J Sol-Gel Sci Technol. 2012;62(3):304–312. doi:10.1007/s10971-012-2725-7
  • Sutanto H, Wibowo S, Nurhasanah I, et al. Ag doped ZnO thin films synthesized by spray coating technique for methylene blue photodegradation under UV irradiation. Int J Chem Eng. 2016;2016; doi:10.1155/2016/6195326
  • Abdelsamad AMA, Gad-Allah TA, Mahmoud FA, et al. Enhanced photocatalytic degradation of textile wastewater using Ag/ZnO thin films. J Water Process Eng. 2018;25:88–95. doi:10.1016/j.jwpe.2018.07.002
  • Balsure SD, Gurav M, Kadam RH, et al. X-ray line profile analysis and magnetic and optical properties of FexZn0.95–xCr0.05O nanoparticles fabricated by sol-gel route. Cerâmica. 2022;68:24–32. doi:10.1590/0366-69132022683853187
  • Yahia SB, Znaidi L, Kanaev A, et al. Raman study of oriented ZnO thin films deposited by sol–gel method. Spectrochim Acta A Mol Biomol Spectrosc. 2008;71(4):1234–1238. doi:10.1016/j.saa.2008.03.032
  • Khan TM, Bibi T, Hussain B. Synthesis and optical study of heat-treated ZnO nanopowder for optoelectronic applications. Bull Mater Sci. 2015;38(7):1851–1858. doi:10.1007/s12034-015-1103-9
  • Georgekutty R, Seery MK, Pillai SC. A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J Phys Chem C. 2008;112(35):13563–13570. doi:10.1021/jp802729a
  • Cai Y, Fan H, Xu M, et al. Rapid photocatalytic activity and honeycomb Ag/ZnO heterostructures via solution combustion synthesis. Colloids Surf A Physicochem Eng Asp. 2013;436:787–795. doi:10.1016/j.colsurfa.2013.08.008
  • Mahardika T, Putri NA, Putri AE, et al. Rapid and low temperature synthesis of Ag nanoparticles on the ZnO nanorods for photocatalytic activity improvement. Results Phys. 2019;13:102209, doi:10.1016/j.rinp.2019.102209
  • Zeferino RS, Flores MB, Pal U. Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles. J Appl Phys. 2011;109(1):014308, doi:10.1063/1.3530631
  • Keshari AK, Singh M. Precession controlled synthesis and ligands assisted modulation of optical properties and Raman scattering in Ag doped ZnO nano-egg. Physica E Low Dimens Syst Nanostruct. 2020;123:114177, doi:10.1016/j.physe.2020.114177
  • Sridhar A, Sakthivel P, Saravanakumar K, et al. Dual doping effect of Ag+ & Al3+ on the structural, optical, photocatalytic properties of ZnO nanoparticles. Appl Surf Sci Adv. 2023;13:100382, doi:10.1016/j.apsadv.2023.100382
  • Li X, He G, Xiao G, et al. Synthesis and morphology control of ZnO nanostructures in microemulsions. J Colloid Interface Sci. 2009;333(2):465–473. doi:10.1016/j.jcis.2009.02.029
  • Zhang G, Shen X, Yang Y. Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity. J Phys Chem C. 2011;115(15):7145–7152. doi:10.1021/jp110256s
  • Dhayagude AC, Nikam SV, Kapoor S, et al. Effect of electrolytic media on the photophysical properties and photocatalytic activity of zinc oxide nanoparticles synthesized by simple electrochemical method. J Mol Liq. 2017;232:290–303. doi:10.1016/j.molliq.2017.02.074
  • Irine TM, Rathika A. Synthesis of silver (Ag) doped zinc oxide (ZnO) nanoparticles as efficientphotocatalytic activity for degradation methylene blue dye. J Adv Sci Res. 2022;13(2):129–135. doi:10.55218/JASR.202213217
  • Shreema K, Mathammal R, Kalaiselvi V, et al. Green synthesis of silver doped zinc oxide nanoparticles using fresh leaf extract morinda citrifoliaand its antioxidant potential. Mater Today Proc. 2021;47:2126–2131. doi:10.1016/j.matpr.2021.04.627
  • Maity J, Roy D, Bala T. Template-free synthesis of hexagonal ZnO disk and ZnO–Ag composite as potential photocatalyst. Hybrid Adv. 2023;3:100055, doi:10.1016/j.hybadv.2023.100055
  • Yi Z, Xu X, Kang X, et al. Fabrication of well-aligned ZnO@Ag nanorod arrays with effective charge transfer for surface-enhanced Raman scattering. Surf Coat Technol. 2017;324:257–263. doi:10.1016/j.surfcoat.2017.05.084
  • Pal AK, Pagal S, Prashanth K, et al. Ag/ZnO/Au 3D hybrid structured reusable SERS substrate as highly sensitive platform for DNA detection. Sens Actuators B Chem. 2019;279:157–169. doi:10.1016/j.snb.2018.09.085
  • Chen X, Zhu L, Ma Z, et al. Derivatization reaction-based surface-enhanced Raman scattering for detection of methanol in transformer oil using Ag/ZnO composite nanoflower substrate. Appl Surf Sci. 2022;604:154442, doi:10.1016/j.apsusc.2022.154442
  • Qi K, Cheng B, Yu J, et al. Review on the improvement of the photocatalytic and antibacterial. activities of ZnO. J Alloys Compd. 2017;727:792–820. doi:10.1016/j.jallcom.2017.08.142
  • Waghchaure RH, Adole VA, Jagdale BS. Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and eriochrome black T dyes by modified ZnO nanocatalysts: A concise review. Inorg Chem Commun. 2022;143:109764, doi:10.1016/j.inoche.2022.109764
  • Hunge YM. Photoelectrocatalytic degradation of methylene blue using spray deposited ZnO thin films under UV illumination. MOJ Poly Sci. 2017;1(4):135–139. doi:10.15406/mojps.2017.01.00020.
  • Navidpour AH, Kalantari Y, Salehi M, et al. Plasma-sprayed photocatalytic zinc oxide coatings. J Therm Spray Tech. 2017;26:717–727. doi:10.1007/s11666-017-0541-x
  • Vallejo W, Cantillo A, Díaz-Uribe C. Methylene blue photodegradation under visible irradiation on Ag-doped ZnO thin films. Int J Photoenergy. 2020;2020:1, doi:10.1155/2020/1627498
  • Daher EA, Riachi B, Chamoun J, et al. New approach for designing wrinkled and porous ZnO thin films for photocatalytic applications. Colloids Surf A Physicochem Eng Asp. 2023;658:130628, doi:10.1016/j.colsurfa.2022.130628
  • Le TK, Flahaut D, Martinez H, et al. Surface fluorination of single-phase TiO2 by thermal shock method for enhanced UV and visible light induced photocatalytic activity. Appl Catal B. 2014;144:1–11. doi:10.1016/j.apcatb.2013.06.027
  • Wang C, Wu D, Wang P, et al. Effect of oxygen vacancy on enhanced photocatalytic activity of reduced ZnO nanorod arrays. Appl Surf Sci. 2015;325:112–116. doi:10.1016/j.apsusc.2014.11.003
  • Namai Y, Matsuoka O. Chain structures of surface hydroxyl groups formed via line oxygen vacancies on TiO2 (110) surfaces studied using noncontact atomic force microscopy. J Phys Chem B. 2005;109(50):23948–23954. doi:10.1021/jp058210r
  • Minero C, Mariella G, Maurino V, et al. Photocatalytic transformation of organic compounds in the presence of inorganic ions. 2. Competitive reactions of phenol and alcohols on a titanium dioxide−fluoride system. Langmuir. 2000;16(23):8964–8972. doi:10.1021/la0005863
  • Guo MY, Ng AMC, Liu F, et al. Effect of native defects on photocatalytic properties of ZnO. J Phys Chem C. 2011;115(22):11095–11101. doi:10.1021/jp200926u
  • Xuan TMC, Tran TN, Botto C, et al. Zinc-containing precursor dependence of hydrothermal method for the synthesis of N-doped ZnO photocatalysts. Chem Eng Commun. 2021;208(2):149–158. doi:10.1080/00986445.2019.1694917
  • Li Y, Wang Y, Liu L, et al. Ag/ZnO hollow sphere composites: reusable photocatalyst for photocatalytic degradation of 17α-ethinylestradiol. Environ Sci Pollut Res. 2014;21:5177–5186. doi:10.1007/s11356-013-2133-8
  • Saravanan R, Karthikeyan N, Gupta VK, et al. Zno/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light. Mater Sci Eng C. 2013;33(4):2235–2244. doi:10.1016/j.msec.2013.01.046
  • Li M, Xing Z, Jiang J, et al. Surface plasmon resonance-enhanced visible-light-driven photocatalysis by Ag nanoparticles decorated S-TiO2− nanorods. J Taiwan Inst Chem Eng. 2018;82:198–204. doi:10.1016/j.jtice.2017.11.023