613
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Natural radioactivity measurements and evaluation of radiological hazards in the soil of an iron beneficiation plant in China

, , , , , , & show all
Article: 2287805 | Received 23 Jun 2023, Accepted 21 Nov 2023, Published online: 02 Dec 2023

References

  • Isinkaye OM, Adeleke S, Isah DA. Background radiation measurement and the assessment of radiological impacts due to natural radioactivity around Itakpe iron-ore mines. Mapan. 2018;33:271–280. doi:10.1016/j.jtusci.2014.03.004
  • Li B, Wang N, Wan J, et al. In-situ gamma-ray survey of rare-earth tailings dams-a case study in Baotou and Bayan Obo Districts, China. J Environ Radioactiv. 2016;151:304–310. doi:10.1016/j.jenvrad.2015.10.027
  • Taha SH, Sallam OR, Abbas AEA, et al. Radioactivity and environmental impacts of ferruginous sandstone and its associating soil. Int J Environ An Ch. 2021;101(15):2899–2908. doi:10.1080/03067319.2020.1715377
  • Ebyan OA, Khamis HA, Baghdady AR, et al. Low-temperature alteration of uranium–thorium bearing minerals and its significance in neoformation of radioactive minerals in stream sediments of Wadi El-Reddah, North Eastern Desert, Egypt. Acta Geochim. 2020;39:96–115. doi:10.1007/s11631-019-00335-z
  • Paul SN, Frazzoli C, Sikoki FD, et al. Natural occurring radioactive materials (NORMs) from mining sites in Nigeria: A systematic review of geographical distribution and public health concern. J Environ Radioactiv. 2022;249:106889. doi:10.1016/j.jenvrad.2022.106889
  • Okasha SA, Faheim AA, Monged MH, et al. Radiochemical technique as a tool for determination and characterisation of El Sela ore grade uranium deposits. Int J Environ An Che. 2023;103(4):737–746. doi:10.1080/03067319.2020.1863388
  • Ali MM, Li Z, Zhao H, et al. Characterization of the health and environmental radiological effects of TENORM and radiation hazard indicators in petroleum waste-Yemen. Process Saf Environ. 2021;146:451–463. doi:10.1016/j.psep.2020.11.016
  • Abed NS, El Feky MG, El-Taher A, et al. Geochemical conditions and factors controlling the distribution of major, trace, and rare elements in Sul Hamed Granitic Rocks, Southeastern Desert, Egypt. Minerals-Basel. 2022;12(10):1245. doi:10.3390/min12101245
  • Ajmal PY, Bhangare RC, Tiwari M, et al. External gamma radiation levels and natural radioactivity in soil around a phosphate fertilizer plant at Mumbai. J Radioanal Nucl Ch. 2014;300(1):23–27. doi:10.1007/s10967-014-2941-4
  • Muhammad AN, Ismail AF, Garba NN. Annual effective dose associated with radioactivity in drinking water from tin mining areas in north-western Nigeria. J Radiat Res Appl Sc. 2022;15(3):96–102. doi:10.1016/j.jrras.2022.06.008
  • Baborowski M, Büttner O, Morgenstern P, et al. Spatial variability of metal pollution in groyne fields of the Middle Elbe-implications for sediment monitoring. Environ Pollut. 2012;167:115–123. doi:10.1016/j.envpol.2012.03.046
  • Gbadamosi MR, Afolabi TA, Ogunneye AL, et al. Distribution of radionuclides and heavy metals in the bituminous sand deposit in Ogun State, Nigeria–A multi-dimensional pollution, health and radiological risk assessment. J Geochem Explor. 2018;190:187–199. doi:10.1016/j.gexplo.2018.03.006
  • Lu A, Wang J, Qin X, et al. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, People’s Republic of China. Sci Total Environ. 2012;425:66–74. doi:10.1016/j.scitotenv.2012.03.003
  • Porcelli D, Baskaran M. An overview of isotope geochemistry in environmental studies. In: Baskaran M, editor. Handbook of environmental isotope geochemistry. Advances in isotope geochemistry. Berlin, Heidelberg: Springer; 2012. 1 AND 2; p. 11–32. doi:10.1007/978-3-642-10637-8_2
  • Silver Turyahabwa ER, Jurua E, Oriada R, et al. Determination of natural radioactivity levels due to mine tailings from selected mines in Southwestern Uganda. J Environ Earth Sci. 2016;6(6):154–163. http://ir.must.ac.ug/xmlui/handle/123456789/1511.
  • Damla N, Alp MS, Yesilkanat CM, et al. Evaluation and analysis of the spatial distribution of radiation risks caused by radon in drinking water of Batman, Türkiye. J Radioanal Nucl Ch. 2022;331(12):5859–5868. doi:10.1007/s10967-022-08670-x
  • Perevoshchikov R, Perminova A, Menshikova E. Natural radionuclides in soils of natural-technogenic landscapes in the impact zone of potassium salt mining. Minerals-Basel. 2022;12(11):1352. doi:10.3390/min12111352
  • Ajayi OS, Balogun KO, Dike CG. Spatial distributions and dose assessment of natural radionuclides in rocks and soils of some selected sites in southwestern Nigeria. Hum Ecol Risk Assess Int J. 2017;23(6):1373–1388. doi:10.1080/10807039.2017.1312278
  • Bramki A, Ramdhane M, Benrachi F. Natural radioelement concentrations in fertilizers and the soil of the Mila region of Algeria. J Radiat Res Appl Sci. 2018;11(1):49–55. doi:10.1016/j.jrras.2017.08.002
  • Akpan AE, Ebong ED, Ekwok SE, et al. Assessment of radionuclide distribution and associated radiological hazards for soils and beach sediments of Akwa Ibom Coastline, southern Nigeria. Arab J Geosci. 2020;13:1–12. doi:10.1007/s12517-020-05727-7
  • Ekpe EE, Ben UC, Ekwok SE, et al. Assessment of natural radionuclide distribution pattern and radiological risk from rocks in Precambrian Oban massif, southeastern Nigeria. Minerals-Basel. 2022;12(3):312. doi:10.3390/min12030312
  • MEERPC - Ministry of Ecology and Environment of the People's Republic of China. HJ 61-2021 Technical specification for radiation environmental monitoring, Beijing; 2021.
  • SEPAC - State Environmental Protection Administration of China. HJ/T 166-2004 The technical specification for soil environmental monitoring, Beijing; 2004.
  • SAC - Standardization Administration of China, AQSIQ - State General Administration of the People's Republic of China for Quality Supervision and Inspection and Quarantine. GB/T 11743-2013 Determination of radionuclides in soil by gamma spectrometry, Beijing; 2013.
  • Liu Y, Zhou W, Gao B, et al. Determination of radionuclide concentration and radiological hazard in soil and water near the uranium tailings reservoir in China. Env Pollut Bioavail. 2021;33(1):174–183. doi:10.1080/26395940.2021.1951123
  • Matyskin AV, Stamatopoulos A, O’Brien EM, et al. Production of zirconium-88 via proton irradiation of metallic yttrium and preparation of target for neutron transmission measurements at DICER. Sci Rep-UK. 2023;13(1):1736. doi:10.1038/s41598-023-27993-7
  • Wang J, Liu J, Chen Y, et al. Technologically elevated natural radioactivity and assessment of dose to workers around a granitic uranium deposit area, China. J Radioanal Nucl Ch. 2016;310:733–741. doi:10.1007/s10967-016-4809-2
  • Kandari T, Prasad M, Pant P, et al. Study of radon flux and natural radionuclides (226Ra, 232Th and 40K) in the Main Boundary Thrust region of Garhwal Himalaya. Acta Geophys. 2018;66(5):1243–1248. doi:10.1007/s11600-018-0158-6
  • Gaso M I, González P R, Segovia N. Gamma dose rate and 226Ra activity concentrations in the soil around a Mexican radioactive waste-storage center. J Radioanal Nucl Ch. 2015;303:2321–2331. doi:10.1007/s10967-014-3774-x
  • UNSCEAR - United Nations Scientific Committee on the Effects of Atomic Radiation. Sources, effects and risks of ionizing radiation. Report to the general assembly with scientific annexes A and B, New York; 2008.
  • Taqi AH, Namq BF. Radioactivity distribution in soil samples of the Baba Gurgur dome of Kirkuk oil field in Iraq. Int J Environ An Ch. 2022;Onile:1–19. doi:10.1080/03067319.2022.2077104
  • Kumar E, Subramani T, Li P, et al. Quantification of health and environmental risks due to radionuclides in limestone mining regions of Ariyalur, South India. Hum Ecol Risk Assess Int J. 2022;28(2):243–264. doi:10.1080/10807039.2022.2040000
  • ICRP - International Commission on Radiological Protection. 1990 recommendations of the international commission on radiological protection. ICRP Publ 60 Ann ICRP. 1991;21(1-3):1–201.
  • Özden S, Aközcan S. Natural radioactivity measurements and evaluation of radiological hazards in sediment of Aliağa Bay, İzmir (Turkey). Arab J Geosci. 2021;14:64. doi:10.1007/s12517-020-06446-9
  • Shilpa GM, Anandaram BN, Mohankumari TL. Measurement of activity concentration of primordial radionuclides in soil samples from Thirthahalli taluk and the assessment of resulting radiation dose. J Radioanal Nucl Ch. 2018;316:501–511. doi:10.1007/s10967-018-5788-2
  • Pandit P, Mangala P, Saini A, et al. Radiological and pollution risk assessments of terrestrial radionuclides and heavy metals in a mineralized zone of the siwalik region (India). Chemosphere. 2020;254:126857. doi:10.1016/j.chemosphere.2020.126857
  • Dindaroğlu T. The use of the GIS Kriging technique to determine the spatial changes of natural radionuclide concentrations in soil and forest cover. J Environ Health Sci Engineer. 2014;12:130. doi:10.1186/s40201-014-0130-6
  • WGSRNSERLC-The Writing Group for the Summary Report on Nationwide Survey of Environmental Radioactivity Level in China. Investigation of natural radionuclide contents in soil in China. Radiat Prot. 1992;12(02):122–142.
  • An LB, Nguyen VT, Huynh NPT, et al. Activity concentrations of natural radionuclides in soil and water around some quarries and potential human health effects. Water Air Soil Poll. 2023;234(2):122. doi:10.1007/s11270-023-06147-5
  • Yasmin S, Barua BS, Khandaker MU. The presence of radioactive materials in soil, sand and sediment samples of Potenga sea beach area, Chittagong, Bangladesh: geological characteristics and environmental implication. Results Phys. 2018;8:1268–1274. doi:10.1016/j.rinp.2018.02.013
  • Otoo F, Darko EO, Garavaglia M. Correlation analysis of natural radionuclides, radon exposure, soil particles, and moisture from Quarry Towns in Greater Accra Region, Ghana. Water Air Soil Poll. 2022;233(8):338. doi:10.1007/s11270-022-05791-7
  • Khandaker MU, Asaduzzaman K, Sulaiman AFB, et al. Elevated concentrations of naturally occurring radionuclides in heavy mineral-rich beach sands of Langkawi Island, Malaysia. Mar Pollut Bull. 2018;127:654–663. doi:10.1016/j.marpolbul.2017.12.055
  • Shuaibu HK, Khandaker MU, Alrefae T, et al. Assessment of natural radioactivity and gamma-ray dose in monazite rich black Sand Beach of Penang Island, Malaysia. Mar Pollut Bull. 2017;119(1):423–428. doi:10.1016/j.marpolbul.2017.03.026
  • Satyanarayana GVV, Sivakumar NS, VidyaSagar D, et al. Measurement of natural radioactivity and radiation hazard assessment in the soil samples of Visakhapatnam, Andhra Pradesh, India. J Indian Chem Soc. 2023;100(1):100856. doi:10.1016/j.jics.2022.100856
  • Nguelem EJM, Ndontchueng MM, Motapon O. Determination of 226Ra, 232Th, 40K, 235U and 238U activity concentration and public dose assessment in soil samples from bauxite core deposits in Western Cameroon. SpringerPlus. 2016;5(1):1–12. doi:10.1186/s40064-015-1659-2
  • Hazou E, Patchali TE, Konzou E, et al. Radiological assessment and statistical approaches of natural radionuclides in soil samples related to phosphate ore activities in the site of Dagbati, southern region of Togo. Water Air Soil Poll. 2022;233(7):237. doi:10.1007/s11270-022-05700-y
  • Habib MA, Basuki T, Miyashita S, et al. Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment. Radiochim Acta. 2019;107(3):243–259. doi:10.1515/ract-2018-3044
  • Gaafar I, Hanfia M, El-Ahllb Lina S, et al. Assessment of radiation hazards from phosphate rocks, Sibaiya area, central eastern desert, Egypt. App Radiat Isotopes. 2021;173:109734. doi:10.1016/j.apradiso.2021.109734
  • El Zrelli R, Rabaoui L, van Beek P, et al. Natural radioactivity and radiation hazard assessment of industrial wastes from the coastal phosphate treatment plants of Gabes (Tunisia, Southern Mediterranean Sea). Mar Pollut Bull. 2019;146:454–461. doi:10.1016/j.marpolbul.2019.06.075
  • Hamideen MS. Correlations study between environmental radioactivity concentrations and some health risk indicators of soil samples in Amman city, Jordan. Int J Environ An Ch. 2022;102(2):380–390. doi:10.1080/03067319.2020.1722812
  • Bu H, Tan X, Li S. Temporal and spatial variations of water quality in the Jinshui River of the South Qinling Mts. China. Ecotox Environ Safe. 2010;73(5):907–913. doi:10.1016/j.ecoenv.2009.11.007
  • Sardans J, Peñuelas J. Potassium: a neglected nutrient in global change. Global Ecol Biogeogr. 2015;24(3):261–275. doi:10.1111/geb.12259
  • Nursapina N A, Shynybek B A, Matveyeva I V. Effect of mineral fertilisers application on the transfer of natural radionuclides from soil to radish (Raphanus sativus L.). J Environ Radioactiv. 2022;247:106863–106863. doi:10.1016/j.jenvrad.2022.106863
  • Osman R, Dawood YH, Melegy A. Distributions and risk assessment of the natural radionuclides in the soil of Shoubra El Kheima. 2022;13:98–98. doi:10.3390/atmos13010098
  • Jibiri N N, Farai I P, Alausa S K. Activity concentrations of 226Ra, 228Th, and 40K in different food crops from a high background radiation area in Bitsichi. Radiat Environ Bioph. 2007;46:53–59. doi:10.1007/s00411-006-0085-9
  • Tanasković I, Golobocanin D, Miljević N. Multivariate statistical analysis of hydrochemical and radiological data of Serbian spa waters. J Geochem Explor. 2012;112:226–234. doi:10.1016/j.gexplo.2011.08.014
  • Sivakumar S, Chandrasekaran A, Ravisankar R. Measurement of natural radioactivity and evaluation of radiation hazards in coastal sediments of east coast of Tamilnadu using statistical approach. J Taibah Univ Sci. 2014;8(4):375–384. doi:10.1016/j.jtusci.2014.03.004