437
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Lie group analysis, solitons, self-adjointness and conservation laws of the nonlinear elastic structural element equation

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2294554 | Received 30 Jun 2023, Accepted 08 Dec 2023, Published online: 18 Dec 2023

References

  • Wazwaz AM. The tanh method: solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzeica–Dodd–Bullough equations. Chaos Solitons Fractals. 2005;25(1):55–63. doi: 10.1016/j.chaos.2004.09.122
  • Hussain A, Chahlaoui Y, Zaman FD, et al. The Jacobi elliptic function method and its application for the stochastic NNV system. Alex Eng J. 2023;81:347–359. doi:10.1016/j.aej.2023.09.017
  • He JH. Addendum: new interpretation of homotopy perturbation method. Int J Mod Phys B. 2006;20(18):2561–2568. doi: 10.1142/S0217979206034819
  • Zhao X, Wang L, Sun W. The repeated homogeneous balance method and its applications to nonlinear partial differential equations. Chaos Solitons Fractals. 2006;28(2):448–453. doi: 10.1016/j.chaos.2005.06.001
  • Wazwaz AM. A sine-cosine method for handling nonlinear wave equations. Math Comput Model. 2004;40(5–6):499–508. doi: 10.1016/j.mcm.2003.12.010
  • Jawad AJ, Petković MD, Biswas A. Modified simple equation method for nonlinear evolution equations. Appl Math Comput. 2010;217(2):869–877. doi: 10.1016/j.amc.2010.06.030
  • Usman M, Hussain A, Zaman FD. Invariance analysis of thermophoretic motion equation depicting the wrinkle propagation in substrate-supported Graphene sheets. Phys Scr. 2023;98(9):095205. doi: 10.1088/1402-4896/acea46
  • Zhang JL, Wang ML, Wang YM, et al. The improved F-expansion method and its applications. Phys Lett A. 2006;350(1–2):103–109. doi: 10.1016/j.physleta.2005.10.099
  • Aslan I. The exp-function approach to the Schwarzian Korteweg–de Vries equation. Comput Math Appl. 2010;59(8):2896–2900. doi: 10.1016/j.camwa.2010.02.007
  • Mohanty SK, Kumar S, Dev AN, et al. An efficient technique of (G′/G)-expansion method for modified KdV and Burgers equations with variable coefficients. Results Phys. 2022;37:105504. doi: 10.1016/j.rinp.2022.105504
  • Tanoglu G. Hirota method for solving reaction-diffusion equations with generalized nonlinearity. Int J Nonlinear Sci. 2006;1(1):30–36.
  • Hussain A, Ali H, Zaman F, et al. New closed form solutions of some nonlinear pseudo-parabolic models via a new extended direct algebraic method. Int J Math Comput Eng. 2023;2(1):35–58.
  • Yang JJ, Tian SF, Li ZQ. Riemann-Hilbert problem for the focusing nonlinear Schrödinger equation with multiple high-order poles under nonzero boundary conditions. Physica D. 2022;432:133162. doi: 10.1016/j.physd.2022.133162
  • Ovsiannikov LV. Group analysis of differential equations. Academic Press; 2014.
  • Ibragimov NH. CRC handbook of Lie group analysis of differential equations. Boca Raton, CRC Press; 1995.
  • Bluman G, Anco S. Symmetry and integration methods for differential equations. Springer Science & Business Media, New York; 2008.
  • Olver PJ. Equivalence, invariants and symmetry. Cambridge University Press, Cambridge, New York; 1995.
  • Olver PJ. Applications of Lie groups to differential equations. Springer Science & Business Media; 1993.
  • Stephani H. Differential equations: their solution using symmetries. Cambridge University Press, New York; 1989.
  • Hussain A, Kara AH, Zaman FD. New exact solutions of the Thomas equation using symmetry transformations. Int J Appl Comput Math. 2023;9(5):106. doi: 10.1007/s40819-023-01585-5
  • Wazwaz AM. A two-mode modified KdV equation with multiple soliton solutions. Appl Math Lett. 2017;70:1–6. doi: 10.1016/j.aml.2017.02.015
  • Lax PD. Periodic solutions of the KdV equation. Commun Pure Appl Math. 1975;28(1):141–188. doi: 10.1002/cpa.v28:1
  • Sawada K, Kotera T. A method for finding N-soliton solutions of the KdV equation and KdV-like equation. Prog Theor Phys. 1974;51(5):1355–1367. doi: 10.1143/PTP.51.1355
  • Hussain A, Chahlaoui Y, Usman M, et al. Optimal system and dynamics of optical soliton solutions for the Schamel KdV equation. Sci Rep. 2023;13(1):15383. doi: 10.1038/s41598-023-42477-4
  • Kenig C, Ponce G, Vega L. A bilinear estimate with applications to the KdV equation. J Am Math Soc. 1996;9(2):573–603. doi: 10.1090/jams/1996-9-02
  • Miura RM. Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. J Math Phys. 1968;9(8):1202–1214. doi: 10.1063/1.1664700
  • Zhang DJ, Zhao SL, Sun YY, et al. Solutions to the modified Korteweg–de Vries equation. Rev Math Phys. 2014;26(07):1430006. doi: 10.1142/S0129055X14300064
  • Ma WX. Complexion solutions to the Korteweg-de Vries equation. Phys Lett A. 2002;301(1–2):35–44. doi: 10.1016/S0375-9601(02)00971-4
  • Kaya D, Aassila M. An application for a generalized KdV equation by the decomposition method. Phys Lett A. 2002;299(2–3):201–206. doi: 10.1016/S0375-9601(02)00652-7
  • Wadati M. The modified Korteweg-de Vries equation. J Phys Soc Japan. 1973;34(5):1289–1296. doi: 10.1143/JPSJ.34.1289
  • Nagatani T. Modified KdV equation for jamming transition in the continuum models of traffic. Physica A. 1998;261(3–4):599–607. doi: 10.1016/S0378-4371(98)00347-1
  • Mahak N, Akram G. The modified auxiliary equation method to investigate solutions of the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity. Optik. 2020;207:164467. doi: 10.1016/j.ijleo.2020.164467
  • Ibragimov NH. Integrating factors, adjoint equations and Lagrangians. J Math Anal Appl. 2006 Jun;318(2):742–757. doi: 10.1016/j.jmaa.2005.11.012
  • Ibragimov NH. Nonlinear self-adjointness and conservation laws. J Phys A. 2011;44(43):432002. doi: 10.1088/1751-8113/44/43/432002
  • Ibragimov NH. A new conservation theorem. J Math Anal Appl. 2007;333(1):311–328. doi: 10.1016/j.jmaa.2006.10.078
  • Gandarias ML. Weak self-adjoint differential equations. J Phys A. 2011;44(26):262001. doi: 10.1088/1751-8113/44/26/262001