637
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A molecular informatics and in-vitro approach to evaluate the HMG-CoA reductase inhibitory efficacy of monoterpenes, carvacrol and geraniol

, , , , , , , , & show all
Article: 2297456 | Received 22 Jul 2023, Accepted 17 Dec 2023, Published online: 30 Dec 2023

References

  • Waiz M, Alvi SS, Khan MS. Potential dual inhibitors of PCSK-9 and HMG-R from natural sources in cardiovascular risk management. EXCLI J. 2022;21:47–76. doi:10.17179/EXCLI2021-4453
  • Ahmad P, Alvi SS, Iqbal D, et al. Insights into pharmacological mechanisms of polydatin in targeting risk factors-mediated atherosclerosis. Life Sci. 2020;254:117756. doi:10.1016/j.lfs.2020.117756
  • Alvi SS, Ansari IA, Khan I, et al. Potential role of lycopene in targeting proprotein convertase subtilisin/kexin type-9 to combat hypercholesterolemia. Free Radic Biol Med. 2017;108:394–403. doi:10.1016/j.freeradbiomed.2017.04.012
  • Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109:1125–1131. doi:10.1172/JCI0215593
  • Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell. 2015;161:161–172. doi:10.1016/j.cell.2015.01.036
  • Ahmad P, Alvi SS, Khan MS. Functioning of organosulfur compounds from garlic (Allium sativum Linn) in targeting risk factor-mediated atherosclerosis: a cross talk between alternative and modern medicine. In: MS Akhtar, MK Swamy, UR Sinniah, editors. Nat. Bio-active compd. Singapore: Springer; 2019. p. 561–585. doi:10.1007/978-981-13-7154-7_20
  • Ahmad P, Alvi SS, Iqbal J, et al. Target-based virtual and biochemical screening against HMG-CoA reductase reveals Allium sativum-derived organosulfur compound N-acetyl cysteine as a cardioprotective agent. Rev Bras Farmacogn. 2022;32:962–973. doi:10.1007/s43450-022-00330-1
  • Ward NC, Watts GF, Eckel RH. Statin toxicity. Circ Res. 2019;124:328–350. doi:10.1161/CIRCRESAHA.118.312782
  • Iqbal D, Khan MS, Khan MS, et al. An In vitro and molecular informatics study to evaluate the antioxidative and β-hydroxy-β-methylglutaryl-CoA reductase inhibitory property of Ficus virens Ait. Phyther Res. 2014;28:899–908. doi:10.1002/ptr.5077
  • Alvi SS, Iqbal D, Ahmad S, et al. Molecular rationale delineating the role of lycopene as a potent HMG-CoA reductase inhibitor: in vitro and in silico study. Nat Prod Res. 2016;30:2111–2114. doi:10.1080/14786419.2015.1108977
  • Ahmad P, Alvi SS, Iqbal J, et al. Identification and evaluation of natural organosulfur compounds as potential dual inhibitors of α-amylase and α-glucosidase activity: an in-silico and in-vitro approach. Med Chem Res. 2021;30:2184–2202. doi:10.1007/s00044-021-02799-2
  • Akhter F, Alvi SS, Ahmad P, et al. Therapeutic efficacy of Boerhaavia diffusa (Linn.) root methanolic extract in attenuating streptozotocin-induced diabetes, diabetes-linked hyperlipidemia and oxidative-stress in rats. Biomed Res Ther. 2019;6:3293–3306. doi:10.15419/bmrat.v6i7.556
  • Khazdair MR, Ghorani V, Alavinezhad A, et al. Pharmacological effects of Zataria multiflora Boiss L. and its constituents focus on their anti-inflammatory, antioxidant, and immunomodulatory effects. Fundam Clin Pharmacol. 2018;32:26–50. doi:10.1111/fcp.12331
  • Boskabady MH, Alitaneh S, Alavinezhad A. Carum copticum L.: a herbal medicine with various pharmacological effects. Biomed Res Int. 2014;2014:1–11. doi:10.1155/2014/569087
  • Fachini-Queiroz FC, Kummer R, Estevão-Silva CF, et al. Effects of thymol and carvacrol, constituents of thymus vulgaris L. essential oil, on the inflammatory response. Evidence-Based Complement Altern Med. 2012;2012:1–10. doi:10.1155/2012/657026
  • Periago PM, Moezelaar R. Combined effect of nisin and carvacrol at different pH and temperature levels on the viability of different strains of Bacillus cereus. Int J Food Microbiol. 2001;68:141–148. doi:10.1016/S0168-1605(01)00461-5
  • Manou I, Bouillard L, Devleeschouwer MJ, et al. Evaluation of the preservative properties of Thymus vulgaris essential oil in topically applied formulations under a challenge test. J Appl Microbiol. 1998;84:368–376. doi:10.1046/j.1365-2672.1998.00353.x
  • Andersen A. Final report on the safety assessment of sodium p -chloro- m -cresol, p -chloro- m -cresol, chlorothymol, mixed cresols, m -cresol, o -cresol, p -cresol, isopropyl cresols, thymol, o -cymen-5-ol, and Carvacrol1. Int J Toxicol. 2006;25:29–127. doi:10.1080/10915810600716653
  • Ultee A, Bennik MHJ, Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen bacillus cereus. Appl Environ Microbiol. 2002;68:1561–1568. doi:10.1128/AEM.68.4.1561-1568.2002
  • De Vincenzi M, Stammati A, De Vincenzi A, et al. Constituents of aromatic plants: carvacrol. Fitoterapia. 2004;75:801–804. doi:10.1016/j.fitote.2004.05.002
  • Wang L, Wang D, Wu X, et al. Antiviral mechanism of carvacrol on HSV-2 infectivity through inhibition of RIP3-mediated programmed cell necrosis pathway and ubiquitin-proteasome system in BSC-1 cells. BMC Infect Dis. 2020;20:832. doi:10.1186/s12879-020-05556-9
  • Pilau MR, Alves SH, Weiblen R, et al. Antiviral activity of the Lippia graveolens (Mexican oregano) essential oil and its main compound carvacrol against human and animal viruses. Braz J Microbiol. 2011;42:1616–1624. doi:10.1590/S1517-83822011000400049
  • Park J-H, Jeon Y-J, Lee C-H, et al. Insecticidal toxicities of carvacrol and thymol derived from Thymus vulgaris Lin. against Pochazia shantungensis Chou & Lu., newly recorded pest. Sci Rep. 2017;7:40902. doi:10.1038/srep40902
  • Khan I, Bahuguna A, Kumar P, et al. In vitro and in vivo antitumor potential of carvacrol nanoemulsion against human lung adenocarcinoma A549 cells via mitochondrial mediated apoptosis. Sci Rep. 2018;8:144. doi:10.1038/s41598-017-18644-9
  • Fan K, Li X, Cao Y, et al. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer Drugs. 2015;26:813–823. doi:10.1097/CAD.0000000000000263
  • Sampaio LA, Pina LTS, Serafini MR, et al. Antitumor effects of carvacrol and thymol: a systematic review. Front Pharmacol. 2021;12:702487. doi:10.3389/fphar.2021.702487.
  • Kara M, Uslu S, Demirci F, et al. Supplemental carvacrol can reduce the severity of inflammation by influencing the production of mediators of inflammation. Inflammation. 2015;38:1020–1027. doi:10.1007/s10753-014-0066-0
  • Cicalău G, Babes P, Calniceanu H, et al. Anti-Inflammatory and antioxidant properties of carvacrol and magnolol. in periodontal disease and diabetes mellitus. Molecules. 2021;26:6899. doi:10.3390/molecules26226899
  • Bayramoglu G, Senturk H, Bayramoglu A, et al. Carvacrol partially reverses symptoms of diabetes in STZ-induced diabetic rats. Cytotechnology. 2014;66:251–257. doi:10.1007/s10616-013-9563-5
  • Rathod NB, Kulawik P, Ozogul F, et al. Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality. Trends Food Sci Technol. 2021;116:733–748. doi:10.1016/j.tifs.2021.08.023
  • Mediouni S, Jablonski JA, Tsuda S, et al. Oregano oil and its principal component, carvacrol, inhibit HIV-1 fusion into target cells. J Virol. 2020;94:10–1128. doi:10.1128/JVI.00147-20.
  • Memar MY, Raei P, Alizadeh N, et al. Carvacrol and thymol: strong antimicrobial agents against resistant isolates. Rev Med Microbiol. 2017;28:63–68. doi:10.1097/MRM.0000000000000100
  • Gavaric N, Mozina SS, Kladar N, et al. Chemical profile, antioxidant and antibacterial activity of thyme and oregano essential oils, thymol and carvacrol and their possible synergism. J Essent Oil Bear Plants. 2015;18:1013–1021. doi:10.1080/0972060X.2014.971069
  • Magi G, Marini E, Facinelli B. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant group A streptococci. Front Microbiol. 2015;6:165. doi:10.3389/fmicb.2015.00165.
  • Wijesundara NM, Lee SF, Cheng Z, et al. Carvacrol exhibits rapid bactericidal activity against streptococcus pyogenes through cell membrane damage. Sci Rep. 2021;11:1487. doi:10.1038/s41598-020-79713-0
  • Kachur K, Suntres Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit Rev Food Sci Nutr. 2020;60:3042–3053. doi:10.1080/10408398.2019.1675585
  • Natal CM, Fernandes MJG, Pinto NFS, et al. New carvacrol and thymol derivatives as potential insecticides: synthesis, biological activity, computational studies and nanoencapsulation. RSC Adv. 2021;11:34024–34035. doi:10.1039/D1RA05616F
  • Simon DZ, Beliveau J, Aube C. Extraction by hydrodiffusion of the essential oil of Monarda fistulosa grown in the province of Quebec: assay of geraniol in the hydrodiffused oil. Int J Crude Drug Res. 1986;24:120–122. doi:10.3109/13880208609060888
  • Baser KHC, Kürkçüoglu M, Demirci B. Ninde oil (Aeollanthus myrianthus Taylor) revisited: analysis of a historical oil. J Essent Oil Res. 2005;17:137–138. doi:10.1080/10412905.2005.9698856
  • Baydar H, Baydar NG. The effects of harvest date, fermentation duration and tween 20 treatment on essential oil content and composition of industrial oil rose (Rosa damascena Mill.). Ind Crops Prod. 2005;21:251–255. doi:10.1016/j.indcrop.2004.04.004
  • Dubey VS, Luthra R. Biotransformation of geranyl acetate to geraniol during palmarosa (Cymbopogon martinii. Roxb. wats. var. motia) inflorescence development. Phytochemistry. 2001;57:675–680. doi:10.1016/S0031-9422(01)00122-4
  • Rajeswara Rao BR, Bhattacharya AK, Mallavarapu GR, et al. Yellowing and crinkling disease and its impact on the yield and composition of the essential oil of citronella(Cymbopogon winterianus Jowitt.). Flavour Fragr J. 2004;19:344–350. doi:10.1002/ffj.1313
  • Prasad SN, Muralidhara M. Analysis of the antioxidant activity of geraniol employing various in-vitro models: relevance to neurodegeneration in diabetic neuropathy. Asian J Pharm Clin Res. 2017;10:101. doi:10.22159/ajpcr.2017.v10i7.18564
  • Farokhcheh M, Hejazian L, Akbarnejad Z, et al. Geraniol improved memory impairment and neurotoxicity induced by zinc oxide nanoparticles in male wistar rats through its antioxidant effect. Life Sci. 2021;282:119823. doi:10.1016/j.lfs.2021.119823
  • Lei Y, Fu P, Jun X, et al. Pharmacological properties of geraniol. A review. Planta Med. 2019;85:48–55. doi:10.1055/a-0750-6907
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. doi:10.1038/srep42717
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. Adv Drug Deliv Rev. 2001;46:3–26. The article was originally published in Advanced Drug Delivery Reviews 23 (1997). doi:10.1016/S0169-409X(00)00129-0
  • Banerjee P, Eckert AO, Schrey AK, et al. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46:W257–W263. doi:10.1093/nar/gky318
  • Sheikh SY, Ansari WA, Hassan F, et al. Drug repositioning to discover novel ornithine decarboxylase inhibitors against visceral leishmaniasis. J Mol Recognit. 2023;36(7):e3021. doi:10.1002/jmr.3021.
  • David TI, Adelakun NS, Omotuyi OI, et al. Molecular docking analysis of phyto-constituents from cannabis sativa with pfDHFR. Bioinformation. 2018;14:574–579. doi:10.6026/97320630014574
  • Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science (80-.). 2001;292:1160–1164. doi:10.1126/science.1059344
  • Berman HM. The protein data bank. Nucleic Acids Res. 2000;28:235–242. doi:10.1093/nar/28.1.235
  • Mutlu O. In silico molecular modeling and docking studies on the leishmanial tryparedoxin peroxidase. Brazilian Arch Biol Technol. 2014;57:244–252. doi:10.1590/S1516-89132014000200013
  • Goodford PJ. Drug design by the method of receptor fit. J Med Chem. 1984;27:557–564. doi:10.1021/jm00371a001
  • Patschull AOM, Gooptu B, Ashford P, et al. In silico assessment of potential druggable pockets on the surface of α1-antitrypsin conformers. PLoS One. 2012;7:e36612. doi:10.1371/journal.pone.0036612
  • Ansari WA, Rizvi F, Khan MA, et al. Computational study reveals the inhibitory effects of chemical constituents from Azadirachta indica (Indian Neem) against delta and omicron variants of SARS-CoV-2. Coronaviruses. 2022;3(5):62–72. doi:10.2174/2666796703666220827100054.
  • Casalvieri KA, Matheson CJ, Backos DS, et al. Molecular docking of substituted pteridinones and pyrimidines to the ATP-binding site of the N-terminal domain of RSK2 and associated MM/GBSA and molecular field datasets. Data Br. 2020;29:105347. doi:10.1016/j.dib.2020.105347
  • Kalirajan R, Sankar S, Jubie S, et al. Molecular docking studies and in-silico ADMET screening of some novel oxazine substituted 9-anilinoacridines as topoisomerase II inhibitors. Indian J Pharm Educ Res. 2017;51:110–115. doi:10.5530/ijper.51.1.15
  • Li J, Abel R, Zhu K, et al. The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins Struct Funct Bioinforma. 2011;79:2794–2812. doi:10.1002/prot.23106
  • Guimarães CRW, Cardozo M. MM-GB/SA rescoring of docking poses in structure-based lead optimization. J Chem Inf Model. 2008;48:958–970. doi:10.1021/ci800004w
  • Dasmahapatra U, Kumar CK, Das S, et al. In-silico molecular modelling, MM/GBSA binding free energy and molecular dynamics simulation study of novel pyrido fused imidazo[4,5-c]quinolines as potential anti-tumor agents. Front Chem. 2022;10:991369. doi:10.3389/fchem.2022.991369.
  • Iqbal D, Rehman MT, Alajmi MF, et al. Multitargeted virtual screening and molecular simulation of natural product-like compounds against GSK3β, NMDA-receptor, and BACE-1 for the management of Alzheimer’s disease. Pharmaceuticals. 2023;16:622. doi:10.3390/ph16040622.
  • Bowers KJ, Chow DE, Xu H, et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In: ACM/IEEE SC 2006 Conf., IEEE; 2006. p. 43. doi:10.1109/SC.2006.54
  • Shivakumar D, Williams J, Wu Y, et al. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput. 2010;6:1509–1519. doi:10.1021/ct900587b
  • Grant BJ, Skjaerven L, Yao X-Q. The Bio3D packages for structural bioinformatics. Protein Sci. 2021;30:20–30. doi:10.1002/pro.3923
  • Palma J, Pierdominici-Sottile G. On the uses of PCA to characterise molecular dynamics simulations of biological macromolecules: basics and tips for an effective use. Chem Phys Chem. 2023;24:e202200491. doi:10.1002/cphc.202200491.
  • Newman CB, Preiss D, Tobert JA, et al. Statin safety and associated adverse events a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol. 2019;39:E38–E81. doi:10.1161/ATV.0000000000000073
  • Norata GD, Tibolla G, Catapano AL. Statins and skeletal muscles toxicity: from clinical trials to everyday practice. Pharmacol Res. 2014;88:107–113. doi:10.1016/j.phrs.2014.04.012
  • Reiner Ž. Resistance and intolerance to statins. Nutr Metab Cardiovasc Dis. 2014;24:1057–1066. doi:10.1016/j.numecd.2014.05.009
  • Thompson PD, Panza G, Zaleski A, et al. Statin-associated side effects. J Am Coll Cardiol. 2016;67:2395–2410. doi:10.1016/j.jacc.2016.02.071
  • Atanasov AG, Zotchev SB, Dirsch VM, et al. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 2021;20:200–216. doi:10.1038/s41573-020-00114-z
  • Ma X, Chen C, Yang J. Predictive model of blood-brain barrier penetration of organic compounds1. Acta Pharmacol Sin. 2005;26:500–512. doi:10.1111/j.1745-7254.2005.00068.x
  • Leão RP, Cruz JV, da Costa GV, et al. Identification of new rofecoxib-based cyclooxygenase-2 inhibitors: a bioinformatics approach. Pharmaceuticals. 2020;13:209. doi:10.3390/ph13090209
  • Bittermann K, Goss K-U. Predicting apparent passive permeability of Caco-2 and MDCK cell-monolayers: A mechanistic model. PLoS One. 2017;12:e0190319. doi:10.1371/journal.pone.0190319
  • Yamashita S, Furubayashi T, Kataoka M, et al. Optimized conditions for prediction of intestinal drug permeability using Caco-2 cells. Eur J Pharm Sci. 2000;10:195–204. doi:10.1016/S0928-0987(00)00076-2
  • Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138:103–141. doi:10.1016/j.pharmthera.2012.12.007
  • Neves Cruz J, Santana de Oliveira M, Gomes Silva S, et al. Insight into the interaction mechanism of nicotine, NNK, and NNN with cytochrome P450 2A13 based on molecular dynamics simulation. J Chem Inf Model. 2020;60:766–776. doi:10.1021/acs.jcim.9b00741
  • Ram H, Jaipal N, Charan J, et al. Phytoconstituents of an ethanolic pod extract of Prosopis cineraria triggers the inhibition of HMG-CoA reductase and the regression of atherosclerotic plaque in hypercholesterolemic rabbits. Lipids Health Dis. 2020;19:6. doi:10.1186/s12944-020-1188-z
  • Dougherty DA. Cation-π interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science (80-.). 1996;271:163–168. doi:10.1126/science.271.5246.163
  • Ma JC, Dougherty DA. The Cationminus signpi interaction. Chem Rev. 1997;97:1303–1324. doi:10.1021/cr9603744
  • Wintjens R, Liévin J, Rooman M, et al. Contribution of cation-pi interactions to the stability of protein-DNA complexes. J Mol Biol. 2000;302:395–410. doi:10.1006/jmbi.2000.4040
  • Gallivan JP, Dougherty DA. Cation-pi interactions in structural biology. Proc Natl Acad Sci USA. 1999;96:9459–9464. doi:10.1073/pnas.96.17.9459
  • Zacharias N, Dougherty DA. Cation-pi interactions in ligand recognition and catalysis. Trends Pharmacol Sci. 2002;23:281–287. doi:10.1016/S0165-6147(02)02027-8
  • Banerjee P, Erehman J, Gohlke B-O, et al. Super natural II—a database of natural products. Nucleic Acids Res. 2015;43:D935–D939. doi:10.1093/nar/gku886
  • Istvan ES, Palnitkar M, Buchanan SK, et al. Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis. EMBO J. 2000;19:819–830. doi:10.1093/emboj/19.5.819
  • David CC, Jacobs DJ. Principal component analysis: a method for determining the essential dynamics of proteins. Methods Mol Biol. 2014;1084:193–226. doi:10.1007/978-1-62703-658-0_11.
  • Ashraf N, Asari A, Yousaf N, et al. Combined 3D-QSAR, molecular docking and dynamics simulations studies to model and design TTK inhibitors. Front Chem. 2022;10:1003816. doi:10.3389/fchem.2022.1003816
  • Iqbal D, Khan MS, Khan A, et al. In vitro screening for β -hydroxy- β -methylglutaryl-CoA reductase inhibitory and antioxidant activity of sequentially extracted fractions of Ficus palmata Forsk. Biomed Res Int. 2014;2014:1–10. doi:10.1155/2014/762620