549
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative molecular dynamics simulation of apo and holo forms of the P53 mutant C176F: a structural perspective

& ORCID Icon
Article: 2297457 | Received 01 Jul 2023, Accepted 17 Dec 2023, Published online: 26 Dec 2023

References

  • Harris CC. p53: at the crossroads of molecular carcinogenesis and risk assessment. Science. 1993;262:1980–1981. doi:10.1126/science.8266092
  • Tan TH, Wallis J, Levine AJ. Identification of the p53 protein domain involved in formation of the simian virus 40 large T-antigen-p53 protein complex. J Virol. 1986;59:574–583. doi:10.1128/jvi.59.3.574-583.1986
  • Lane DP. p53, guardian of the genome. Nature. 1992;358:15–16. doi:10.1038/358015a0
  • Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–331. doi:10.1016/S0092-8674(00)81871-1
  • Vousden KH. p53: death star. Cell. 2000;103:691–694. doi:10.1016/S0092-8674(00)00171-9
  • Sharpless NE, DePinho RA. p53: good cop/bad cop. Cell. 2002;110:9–12. doi:10.1016/S0092-8674(02)00818-8
  • Moll UM, Schramm LM. P53–an acrobat in tumorigenesis. Crit Rev Oral Biol Med. 1998;9:23–37. doi:10.1177/10454411980090010101
  • The Cancer Genome Atlas (TCGA). [cited 19 October 2022]. Available from: https://www.genome.gov/Funded-Programs-Projects/Cancer-Genome-Atlas
  • Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 2015;19:A68–A77. doi:10.5114/wo.2014.47136
  • Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502:333–339. doi:10.1038/nature12634
  • Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009;9:701–713. doi:10.1038/nrc2693
  • Ha J-H, Prela O, Carpizo DR, et al. P53 and zinc: a malleable relationship. Front Mol Biosci. 2022;9:895887. doi:10.3389/fmolb.2022.895887
  • Duan J, Nilsson L. Effect of Zn2+ on DNA recognition and stability of the p53 DNA-binding domain. Biochemistry. 2006;45:7483–7492. doi:10.1021/bi0603165
  • Maret W. Zinc in cellular regulation: the nature and significance of “zinc signals”. Int J Mol Sci. 2017;18:2285. doi:10.3390/ijms18112285
  • Keaton MA, Dutta A. Rad18 emerges as a critical regulator of the Fanconi anemia pathway: Comment on: Palle K, et al. Cell Cycle 2011; 10:1625–38. Cell Cycle. 2011;10:2415–2415. doi:10.4161/cc.10.15.15930
  • Butler JS, Loh SN. Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain. Biochemistry. 2003;42:2396–2403. doi:10.1021/bi026635n
  • Mehrian-Shai R, Yalon M, Simon AJ, et al. High metallothionein predicts poor survival in glioblastoma multiforme. BMC Med Genet. 2015;8:68. doi:10.1186/s12920-015-0137-6
  • Méplan C, Richard M-J, Hainaut P. Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene. 2000;19:5227–5236. doi:10.1038/sj.onc.1203907
  • Verhaegh GW, Parat MO, Richard MJ, et al. Modulation of p53 protein conformation and DNA-binding activity by intracellular chelation of zinc. Mol Carcinog. 1998;21:205–214.doi:10.1002/(sici)1098-2744(199803)21:3<205::aid-mc8>3.0.co;2-k
  • Yu X, Blanden AR, Narayanan S, et al. Small molecule restoration of wildtype structure and function of mutant p53 using a novel zinc-metallochaperone based mechanism. Oncotarget. 2014;5:8879–8892. doi:10.18632/oncotarget.2432
  • Tate JG, Bamford S, Jubb HC, et al. Cosmic: the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2019;47:D941–D947. doi:10.1093/nar/gky1015
  • Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes Dev. 2012;26:1268–1286. doi:10.1101/gad.190678.112
  • Skinner HD, Sandulache VC, Ow TJ, et al. TP53 disruptive mutations lead to head and neck cancer treatment failure through inhibition of radiation-induced senescence. Clin Cancer Res. 2012;18:290–300. doi:10.1158/1078-0432.CCR-11-2260
  • Brandt-Rauf PW, Chen JM, Marion MJ, et al. Conformational effects in the p53 protein of mutations induced during chemical carcinogenesis: molecular dynamic and immunologic analyses. J Protein Chem. 1996;15:367–375. doi:10.1007/BF01886863
  • Chitrala KN, Yeguvapalli S. Computational screening and molecular dynamic simulation of breast cancer associated deleterious non-synonymous single nucleotide polymorphisms in TP53 gene. PLoS One. 2014;9:e104242. doi:10.1371/journal.pone.0104242
  • Ferrone M, Perrone F, Tamborini E, et al. Functional analysis and molecular modeling show a preserved wildtype activity of p53(C238Y). Mol Cancer Ther. 2006;5:1467–1473. doi:10.1158/1535-7163.MCT-06-0012
  • Calhoun S, Daggett V. Structural effects of the L145Q, V157F, and R282W cancer-associated mutations in the p53 DNA-binding core domain. Biochemistry. 2011;50:5345–5353. doi:10.1021/bi200192j
  • Pirolli D, Carelli Alinovi C, Capoluongo E, et al. Insight into a novel p53 single point mutation (G389E) by molecular dynamics simulations. Int J Mol Sci. 2010;12:128–140. doi:10.3390/ijms12010128
  • Ashkenazy H, Abadi S, Martz E, et al. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016;44:W344–W350. doi:10.1093/nar/gkw408
  • Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins. 2006;62:1125–1132. doi:10.1002/prot.20810
  • Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 2005;33:W306–W310. doi:10.1093/nar/gki375
  • Chen Y, Lu H, Zhang N, et al. PremPS: predicting the impact of missense mutations on protein stability. PLoS Comput Biol. 2020;16:e1008543. doi:10.1371/journal.pcbi.1008543
  • Rodrigues CHM, Pires DEV, Ascher DB. DynaMut2: assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Sci. 2021;30:60–69. doi:10.1002/pro.3942
  • Savojardo C, Fariselli P, Martelli PL, et al. INPS-MD: a web server to predict stability of protein variants from sequence and structure. Bioinformatics. 2016;32:2542–2544. doi:10.1093/bioinformatics/btw192
  • Parthiban V, Gromiha MM, Schomburg D. CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res. 2006;34:W239–W242. doi:10.1093/nar/gkl190
  • Chen C-W, Lin J, Chu Y-W. iStable: off-the-shelf predictor integration for predicting protein stability changes. BMC Bioinf. 2013;14(Suppl 2):S5. doi:10.1186/1471-2105-14-S2-S5
  • Burley SK, Bhikadiya C, Bi C, et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021;49:D437–D451. doi:10.1093/nar/gkaa1038
  • Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:2714–2723. doi:10.1002/elps.1150181505
  • Jo S, Kim T, Iyer VG, et al. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem. 2008;29:1859–1865. doi:10.1002/jcc.20945
  • Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi:10.1016/j.softx.2015.06.001
  • Hess B, Kutzner C, van der Spoel D, et al. Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435–447. doi:10.1021/ct700301q
  • Lindahl E, Hess B, van der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model. 2001;7:306–317. doi:10.1007/s008940100045
  • Pronk S, Páll S, Schulz R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29:845–854. doi:10.1093/bioinformatics/btt055
  • Van Der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26:1701–1718. doi:10.1002/jcc.20291
  • Onuchic JN, Luthey-Schulten Z, Wolynes PG. Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem. 1997;48:545–600. doi:10.1146/annurev.physchem.48.1.545
  • Amadei A, Linssen AB, Berendsen HJ. Essential dynamics of proteins. Proteins. 1993;17:412–425. doi:10.1002/prot.340170408
  • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–2637. doi:10.1002/bip.360221211
  • Barber RD. Software to visualize proteins and perform structural alignments. Curr Protoc. 2021;1:e292. doi:10.1002/cpz1.292
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–38, 27–28. doi:10.1016/0263-7855(96)00018-5
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30:70–82. doi:10.1002/pro.3943
  • Fu T, Min H, Xu Y, et al. Molecular dynamic simulation insights into the normal state and restoration of p53 function. Int J Mol Sci. 2012;13:9709–9740. doi:10.3390/ijms13089709
  • Macias E, Jin A, Deisenroth C, et al. An ARF-independent c-Myc-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 interaction. Cancer Cell. 2010;18:231–243. doi:10.1016/j.ccr.2010.08.007
  • Joerger AC, Fersht AR. Structural biology of the tumor suppressor p53. Annu Rev Biochem. 2008;77:557–582. doi:10.1146/annurev.biochem.77.060806.091238
  • Chen J, Baxi K, Lipsitt AE, et al. (2021). Defining function of wildtype and patient specific TP53 mutations in a zebrafish model of embryonal rhabdomyosarcoma. 2021.04.21.440757.
  • Hoffman-Luca CG. Investigation of resistant mechanisms of apoptosis- inducing anticancer agents. 118.
  • Bullock AN, Henckel J, DeDecker BS, et al. Thermodynamic stability of wildtype and mutant p53 core domain. Proc Natl Acad Sci USA. 1997;94:14338–14342. doi:10.1073/pnas.94.26.14338
  • Bullock AN, Henckel J, Fersht AR. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene. 2000;19:1245–1256. doi:10.1038/sj.onc.1203434
  • Klein C, Planker E, Diercks T, et al. NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA. J Biol Chem. 2001;276:49020–49027. doi:10.1074/jbc.M107516200
  • Rippin TM, Freund SMV, Veprintsev DB, et al. Recognition of DNA by p53 core domain and location of intermolecular contacts of cooperative binding. J Mol Biol. 2002;319:351–358. doi:10.1016/S0022-2836(02)00326-1
  • Loh SN. The missing Zinc: p53 misfolding and cancer. Metallomics. 2010;2:442–449. doi:10.1039/c003915b
  • Lubin DJ, Butler JS, Loh SN. Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function. J Mol Biol. 2010;395:705–716. doi:10.1016/j.jmb.2009.11.013
  • Chillemi G, Davidovich P, D’Abramo M, et al. Molecular dynamics of the full-length p53 monomer. Cell Cycle. 2013;12:3098–3108. doi:10.4161/cc.26162
  • Blanden AR, Yu X, Blayney AJ, et al. (2020). Zinc shapes the folding landscape of p53 and establishes a new pathway for reactivating structurally diverse p53 mutants. 2020.07.23.217695.
  • Chang Y-S, Lee C-C, Ke T-W, et al. Molecular characterization of colorectal cancer using whole-exome sequencing in a Taiwanese population. Cancer Med. 2019;8:3738–3747. doi:10.1002/cam4.2282
  • Oden-Gangloff A, Di Fiore F, Bibeau F, et al. TP53 mutations predict disease control in metastatic colorectal cancer treated with cetuximab-based chemotherapy. Br J Cancer. 2009;100:1330–1335. doi:10.1038/sj.bjc.6605008
  • Zheng H, Wang Y, Tang C, et al. TP53, PIK3CA, FBXW7 and KRAS mutations in esophageal cancer identified by targeted sequencing. Cancer Genomics. 2016;13(3), 231–238.
  • Blanden AR, Yu X, Loh SN, et al. Reactivating mutant p53 using small molecules as zinc metallochaperones: awakening a sleeping giant in cancer. Drug Discov Today. 2015;20:1391–1397. doi:10.1016/j.drudis.2015.07.006
  • Garufi A, Trisciuoglio D, Porru M, et al. A fluorescent curcumin-based Zn(II)-complex reactivates mutant (R175H and R273H) p53 in cancer cells. J Exp Clin Cancer Res. 2013;32:72. doi:10.1186/1756-9966-32-72
  • Yue X, Zhao Y, Xu Y, et al. Mutant p53 in cancer: accumulation, gain-of-function and therapy. J Mol Biol. 2017;429:1595–1606. doi:10.1016/j.jmb.2017.03.030
  • Tuna M, Ju Z, Yoshihara K, et al. Clinical relevance of TP53 hotspot mutations in high-grade serous ovarian cancers. Br J Cancer. 2020;122:405–412. doi:10.1038/s41416-019-0654-8
  • Yu X, Kogan S, Chen Y, et al. Zinc metallochaperones reactivate mutant p53 using an ON/OFF switch mechanism: a new paradigm in cancer therapeutics. Clin Cancer Res. 2018;24:4505–4517. doi:10.1158/1078-0432.CCR-18-0822