452
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analysis of MHD tangent hyperbolic hybrid nanofluid flow with different base fluids over a porous stretched sheet

& ORCID Icon
Article: 2300851 | Received 22 Aug 2023, Accepted 20 Dec 2023, Published online: 05 Jan 2024

References

  • Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Argonne (IL, USA): Argonne National Lab. (ANL); 1995.
  • Abdelsalam S, Zaher A. Biomimetic amelioration of zirconium nanoparticles on a rigid substrate over viscous slime–a physiological approach. Appl Math Mech. 2023;44(9):1563–1576. doi: 10.1007/s10483-023-3030-7
  • Abdelsalam SI, Magesh A, Tamizharasi P, et al. Versatile response of a Sutterby nanofluid under activation energy: hyperthermia therapy. Int J Numer Methods H. 2023. doi: 10.1108/HFF-04-2023-0173
  • Das PK. A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J Mol Liq. 2017;240:420–446. doi: 10.1016/j.molliq.2017.05.071 .
  • Leong K, Ahmad KK, Ong HC, et al. Synthesis and thermal conductivity characteristic of hybrid nanofluids–a review. Renew Sust Energ Rev. 2017;75:868–878. doi: 10.1016/j.rser.2016.11.068
  • Ahmadi MH, Mirlohi A, Nazari MA, et al. A review of thermal conductivity of various nanofluids. J Mol Liq. 2018;265:181–188. doi: 10.1016/j.molliq.2018.05.124
  • Zaman A, Khan AA, Mabood F, et al. Thermal analysis of unsteady hybrid nanofluid magneto-hemodynamics flow via overlapped curved stenosed channel. Proc Inst Mech Eng C J Mech Eng Sci. 2022;236(15):8754–8766. doi: 10.1177/09544062221081395
  • Kumar TS. Hybrid nanofluid slip flow and heat transfer over a stretching surface. Partial Differ Equ Appl Math. 2021;4:100070. doi: 10.1016/j.padiff.2021.100070
  • Kumbhakar B, Nandi S. Unsteady MHD radiative-dissipative flow of Cu−Al2O3/H2O hybrid nanofluid past a stretching sheet with slip and convective conditions: a regression analysis. Math Comput Simul. 2022;194:563–587. doi: 10.1016/j.matcom.2021.12.018
  • Joshi N, Upreti H, Pandey AK. MHD Darcy–Forchheimer Cu−Ag/H2O−C2H6O2 hybrid nanofluid flow via a porous stretching sheet with suction/blowing and viscous dissipation. Int J Comput Methods Eng Sci Mech. 2022;23(6):527–535. doi: 10.1080/15502287.2022.2030426
  • Hartmann J. Hg-dynamics I: theory of laminar flow of an electrically conductive liquids in a homogeneous magnetic field. Mat Fys Medd. 1937;15(6).
  • Verma L, Meher R. Effect of heat transfer on Jeffery–Hamel Cu/Ag–water nanofluid flow with uncertain volume fraction using the double parametric fuzzy homotopy analysis method. Eur Phys J Plus. 2022;137(3):372. doi: 10.1140/epjp/s13360-022-02586-x
  • Berrehal H, Uma Devi SS, Makinde OD, et al. Inferring optimal proportion for efficient heat transfer and depleted entropy using MgO−Ag/water hybrid nanofluid over convectively heated stretching sheet embedded in a porous medium. Waves Random Complex Media. 2022;1–25. doi: 10.1080/17455030.2021.2022246
  • Algehyne EA, Aldhabani MS, Saeed A, et al. Mixed convective flow of Casson and Oldroyd-B fluids through a stratified stretching sheet with nonlinear thermal radiation and chemical reaction. J Taibah Univ Sci. 2022;16(1):193–203. doi: 10.1080/16583655.2022.2040281
  • Patil P, Goudar B, Sheremet MA. Tangent hyperbolic ternary hybrid nanofluid flow over a rough-yawed cylinder due to impulsive motion. J Taibah Univ Sci. 2023;17(1):2199664. doi: 10.1080/16583655.2023.2199664
  • Khan A, Mir S, Zaman A. Heat sink/source impact on Williamson liquid flow over a stretching cylinder with modified Fourier and Fick's law. Soft Comput. 2023: 1–8. doi: 10.1007/s00500-023-09160-2
  • Kumar K, Reddy M, Aldalbahi A, et al. Application of different hybrid nanofluids in convective heat transport of Carreau fluid. Chaos Solit Fractals. 2020;141:110350. doi: 10.1016/j.chaos.2020.110350
  • Shankaralingappa B, Gireesha B, Prasannakumara B, et al. Darcy–Forchheimer flow of dusty tangent hyperbolic fluid over a stretching sheet with Cattaneo–Christov heat flux. Waves Random Complex Media. 2023;33(3):742–761. doi: 10.1080/17455030.2021.1889711
  • Kumar P, Poonia H, Ali L, et al. The numerical simulation of nanoparticle size and thermal radiation with the magnetic field effect based on tangent hyperbolic nanofluid flow. Case Stud Therm Eng. 2022;37:102247. doi: 10.1016/j.csite.2022.102247
  • Jamshed W, Nisar KS, Ibrahim RW, et al. Thermal expansion optimization in solar aircraft using tangent hyperbolic hybrid nanofluid: a solar thermal application. J Mater Res Technol. 2021;14:985–1006. doi: 10.1016/j.jmrt.2021.06.031
  • Zaib A, Khan U, Wakif A, et al. Numerical entropic analysis of mixed MHD convective flows from a non-isothermal vertical flat plate for radiative tangent hyperbolic blood biofluids conveying magnetite ferroparticles: dual similarity solutions. Arabian J Sci Eng. 2020;45:5311–5330. doi: 10.1007/s13369-020-04393-x
  • Waqas H, Kafait A, Muhammad T, et al. Numerical study for bio-convection flow of tangent hyperbolic nanofluid over a Riga plate with activation energy. Alex Eng J. 2022;61(2):1803–1814. doi: 10.1016/j.aej.2021.06.068
  • Hussain SM, Jamshed W. A comparative entropy based analysis of tangent hyperbolic hybrid nanofluid flow: implementing finite difference method. Int Commun Heat Mass Transf. 2021;129:105671. doi: 10.1016/j.icheatmasstransfer.2021.105671
  • Jeevankumar,   Sandeep N. Effect of magnetic induction on EG-water-based composite nanofluid flow across an elongated region: a KB approach. Waves Random Complex Media. 2022;1–20. doi: 10.1080/17455030.2022.2149881
  • Dawar A, Islam S, Alshehri A, et al. Heat transfer analysis of the MHD stagnation point flow of a non-Newtonian tangent hyperbolic hybrid nanofluid past a non-isothermal flat plate with thermal radiation effect. J Nanomater. 2022;2022:1–12. doi: 10.1155/2022/4903486
  • Sumithra A, Kumar BR, Sivaraj R, et al. Thermal analysis of magnetic iron-oxide nanoparticle with combination of water and ethylene glycol passes through a partially heated permeable square enclosure. J Taibah Univ Sci. 2023;17(1):2257366. doi: 10.1080/16583655.2023.2257366
  • Abdelsalam SI, Alsharif AM, Abd Elmaboud Y, et al. Assorted kerosene-based nanofluid across a dual-zone vertical annulus with electroosmosis. Heliyon. 2023;9(5). doi: 10.1016/j.heliyon.2023.e15916
  • Lie S, Hermann R. Sophus lie's 1884 differential invariants paper. Vol. 3. Brookline (MA, USA): Math Science Press; 1976.
  • Avramenko A, Kobzar S, Shevchuk I, et al. Symmetry of turbulent boundary-layer flows: investigation of different eddy viscosity models. Acta Mech. 2001;151(1-2):1–14. doi: 10.1007/BF01272521
  • Shijun L. Homotopy analysis method: a new analytic method for nonlinear problems. Appl Math Mech. 1998;19(10):957–962. doi: 10.1007/BF02457955
  • Shijun L. Beyond perturbation: introduction to the homotopy analysis method. New York (USA): Chapman and Hall/CRC; 2003. doi: 10.1201/9780203491164
  • Kesarwani J, Meher R. Numerical study of forced imbibition phenomenon in fluid flow through a water-wet porous media. Int J Comput Mater Sci Eng. 2021;10(03):2150016. doi: 10.1142/S2047684121500160
  • Raza R, Naz R, Abdelsalam SI. Microorganisms swimming through radiative Sutterby nanofluid over stretchable cylinder: hydrodynamic effect. Numer Methods Partial Differ Equ. 2023;39(2):975–994. doi: 10.1002/num.22913
  • Khan AA, Arshad A, Ellahi R, et al. Heat transmission in Darcy–Forchheimer flow of Sutterby nanofluid containing gyrotactic microorganisms. Int J Numer Methods H. 2023;33(1):135–152. doi: 10.1108/HFF-03-2022-0194
  • Akbar NS, Nadeem S, Haq RU, et al. Numerical solutions of magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet. Indian J Phys. 2013;87(11):1121–1124. doi: 10.1007/s12648-013-0339-8
  • Zeb S, Khan S, Ullah Z, et al. Lie group analysis of double diffusive mhd tangent hyperbolic fluid flow over a stretching sheet. Math Probl Eng. 2022;2022. doi: 10.1155/2022/9919073
  • Ullah Z, Zaman G. Lie group analysis of magnetohydrodynamic tangent hyperbolic fluid flow towards a stretching sheet with slip conditions. Heliyon. 2017;3(11):e00443. doi: 10.1016/j.heliyon.2017.e00443
  • Chu YM, Nisar KS, Khan U, et al. Mixed convection in MHD water-based molybdenum disulfide-graphene oxide hybrid nanofluid through an upright cylinder with shape factor. Water. 2020;12(6):1723. doi: 10.3390/w12061723
  • Nisar KS, Khan U, Zaib A, et al. Numerical simulation of mixed convection squeezing flow of a hybrid nanofluid containing magnetized ferroparticles in 50%: 50% of ethylene glycol–water mixture base fluids between two disks with the presence of a non-linear thermal radiation heat flux. Front Chem. 2020;8:792. doi: 10.3389/fchem.2020.00792
  • Verma L, Meher R, Hammouch Z, et al. Effect of heat transfer on hybrid nanofluid flow in converging/diverging channel using fuzzy volume fraction. Sci Rep. 2022;12(1):20845. doi: 10.1038/s41598-022-24259-6
  • Alharbi SO, Nawaz M, Nazir U. Thermal analysis for hybrid nanofluid past a cylinder exposed to magnetic field. AIP Adv. 2019;9(11):115022. doi: 10.1063/1.5127327
  • Bluman G, Anco S. Symmetry and integration methods for differential equations. Vol. 154. New York (USA): Springer Science & Business Media; 2008. doi: 10.1007/b97380
  • Jalil M, Asghar S, Mushtaq M. Lie group analysis of mixed convection flow with mass transfer over a stretching surface with suction or injection. Math Probl Eng. 2010;2010:1–14. doi: 10.1155/2010/264901
  • Ali FM, Nazar R, Arifin NM, et al. MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field. Heat Mass Transf. 2011;47(2):155–162. doi: 10.1007/s00231-010-0693-4