1,125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation of Aloe Vera-mediated green synthesized CuAlO2 as HTL in Pb-free perovskite solar cells

, , , , , , , & show all
Article: 2300856 | Received 24 Sep 2023, Accepted 27 Dec 2023, Published online: 08 Jan 2024

References

  • Hossain MK, Ishraque Toki GF, Samajdar DP, et al. Deep insights into the coupled optoelectronic and photovoltaic analysis of lead-free CsSnI3 perovskite-based solar cell using DFT calculations and SCAPS-1D simulations. ACS Omega. 2023;8(25):22466–22485.
  • Hossain MK, Bhattarai S, Arnab AA, et al. Harnessing the potential of CsPbBr3-based perovskite solar cells using efficient charge transport materials and global optimization. RSC Adv. 2023;13(30):21044–21062. doi:10.1039/D3RA02485G
  • Hossain MK, Toki GFI, Kuddus A, et al. An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells. Sci Rep. 2023;13(1):2521. doi:10.1038/s41598-023-28506-2
  • Hossain MK, Toki GFI, Kuddus A, et al. Optimization of the architecture of lead-free CsSnCl3-perovskite solar cells for enhancement of efficiency: a combination of SCAPS-1D and wxAMPS study. Mater Chem Phys. 2023;308:128281. doi:10.1016/j.matchemphys.2023.128281
  • Haque MM, Mahjabin S, Khan S, et al. Study on the interface defects of eco-friendly perovskite solar cells. Sol Energy. 2022;247:96–108. doi:10.1016/j.solener.2022.10.024
  • Ahmed S, Akhtaruzzaman M, Zulhafizhazuan W, et al. Theoretical verification of using the Ga-doped ZnO as a charge transport layer in an inorganic perovskite solar cell. Jpn J Appl Phys. 2023;62(9):0092001. doi:10.35848/1347-4065/aced74
  • Das B, Liu Z, Aguilera I, et al. Defect tolerant device geometries for lead-halide perovskites. Mater Adv. 2021;2(11):3655–3670. doi:10.1039/D0MA00902D
  • Mahmud Hasan AK, Raifuku I, Amin N, et al. Air-stable perovskite photovoltaic cells with low temperature deposited NiOx as an efficient hole-transporting material. Opt Mater Express. 2020;10(8):1801–1816. doi:10.1364/OME.391321
  • Cao Q, Li Y, Zhang H, et al. Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Sci Adv. 2021;7(28):eabg0633.
  • Min H, Lee DY, Kim J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature. 2021;598(7881):444–450. doi:10.1038/s41586-021-03964-8
  • Islam MA, Sarkar DK, Shahinuzzaman M, et al. Green synthesis of lead sulphide nanoparticles for high-efficiency perovskite solar cell applications. Nanomaterials. 2022;12(11):1933. Available from: https://www.mdpi.com/2079-4991/12/11/1933
  • Singh NK, Agarwal A. Numerical investigation of electron/hole transport layer for enhancement of ecofriendly Tin-Ge based perovskite solar cell. Energy Sources Part A. 2023;45(1):3087–3106. doi:10.1080/15567036.2023.2192182
  • Wan Z, Lai H, Ren S, et al. Interfacial engineering in lead-free tin-based perovskite solar cells. J Energy Chem. 2021;57:147–168. doi:10.1016/j.jechem.2020.08.053
  • Cao J, Yan F. Recent progress in tin-based perovskite solar cells. Energy Environ Sci. 2021;14(3):1286–1325. doi:10.1039/D0EE04007J
  • Wang M, Wang W, Ma B, et al. Lead-Free perovskite materials for solar cells. Nano-Micro Lett. 2021;13(1):62. doi:10.1007/s40820-020-00578-z
  • Nishimura K, Kamarudin MA, Hirotani D, et al. Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano Energy. 2020;74:104858. doi:10.1016/j.nanoen.2020.104858
  • Jiang X, Wang F, Wei Q, et al. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat Commun. 2020;11(1):1–7. doi:10.1038/s41467-019-13993-7
  • Mottakin M, Sobayel K, Sarkar D, et al. Design and modelling of eco-friendly CH3NH3SnI3-based perovskite solar cells with suitable transport layers. Energies. 2021;14(21):7200. doi:10.3390/en14217200
  • Singh NK, Agarwal A. Performance assessment of sustainable highly efficient CsSn0.5Ge0.5I3/FASnI3 based Perovskite solar cell: a numerical modelling approach. Opt Mater (Amst). 2023;139:113822. doi:10.1016/j.optmat.2023.113822
  • Li S, Cao Y-L, Li W-H, et al. A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Met. 2021;40(10):2712–2729. doi:10.1007/s12598-020-01691-z
  • Dunlap-Shohl WA, Daunis TB, Wang X, et al. Room-temperature fabrication of a delafossite CuCrO2hole transport layer for perovskite solar cells. J Mater Chem A. 2018;6(2):469–477. doi:10.1039/C7TA09494A
  • Sarkar DK, Mahmud Hasan AK, Mottakin M, et al. Lead free efficient perovskite solar cell device optimization and defect study using Mg doped CuCrO2 as HTL and WO3 as ETL. Sol Energy. 2022;243:215–224. doi:https://doi.org/10.1016/j.solener.2022.07.013.
  • Kawazoe H, Yasukawa M, Hyodo H, et al. P-type electrical conduction in transparent thin films of CuAlO2. Nature. 1997;389:939–942. doi:10.1038/40087
  • Igbari F, Li M, Hu Y, et al. A room-temperature CuAlO2hole interfacial layer for efficient and stable planar perovskite solar cells. J Mater Chem A. 2016;4(4):1326–1335. doi:10.1039/C5TA07957H
  • Shasti M, Mortezaali A. Numerical study of Cu2O, SrCu2O2, and CuAlO2 as hole-transport materials for application in perovskite solar cells. Physica Status Solidi A. 2019;216(18):1900337.
  • Bao F, Sui H, Gong Z, et al. Enhanced interstitial oxygen-enabled efficient CuAl(M)O2hole extractors for air-stable all-inorganic perovskite solar cells. ACS Sustain Chem Eng. 2023;11(14):5665–5673. doi:10.1021/acssuschemeng.3c00149
  • Jan ST, Noman M. Analyzing the effect of planar and inverted structure architecture on the properties of MAGeI3perovskite solar cells. Energy Technol. 2023;11:2300564. doi:10.1002/ente.202300564
  • Mahjabin S, et al. Boosting perovskite solar cell stability through a sputtered Mo-doped tungsten oxide (WOx). Electron Transport Layer. Energy Fuels. 2023;37(24):19860–19869.
  • Mahjabin S, Haque M, Sobayel K, et al. Investigation of morphological, optical, and dielectric properties of RF sputtered WOx thin films for optoelectronic applications. Nanomaterials. 2022;12(19):3467. doi:10.3390/nano12193467
  • Mahjabin S, Hossain MI, Haque MM, et al. Sputtered WOx thin film as the electron transport layer for efficient perovskite solar cells. Appl Phys A. 2022;128(4):358. doi:10.1007/s00339-022-05500-5
  • Mahjabin S, Mahfuzul Haque M, Khan S, et al. Effects of oxygen concentration variation on the structural and optical properties of reactive sputtered WOx thin film. Sol Energy. 2021;222:202–211. doi:10.1016/j.solener.2021.05.031
  • Mahy JG, Lambert SD.. Heterogeneous photocatalysis: a solution for a greener earth. Catalysts. 2022;12:686.
  • Nakanishi A, Katayama-Yoshida H, Ishikawa T, et al. Chemical trend of superconducting critical temperatures in hole-doped CuBO2, CuAlO2, CuGaO2, and CuInO2. J Phys Soc Jpn. 2016;85(9):0094711. doi:10.7566/JPSJ.85.094711
  • Kawazoe H, Yasukawa M, Hyodo H, et al. P-type electrical conduction in transparent thin films of CuAlO2. Nature. 1997;389(6654):939–942. doi:10.1038/40087
  • Benreguia N, Barnabé A, Trari M. Sol–gel synthesis and characterization of the delafossite CuAlO2. J Solgel Sci Technol. 2015;75(3):670–679. doi:10.1007/s10971-015-3737-x
  • Saha B, Thapa R, Chattopadhyay K. A novel route for the low temperature synthesis of p-type transparent semiconducting CuAlO2. Mater Lett. 2009;63(3-4):394–396. doi:10.1016/j.matlet.2008.10.048
  • Ferraro JR.. Infrared spectra of inorganic and coordination compounds (Nakamoto, Kazuo). J. Chem. Educ. 1963;40(9):501.
  • Prakash T, Padma Prasad K, Ramasamy S, et al. Optical and electrical properties of mechanochemically synthesized nanocrystalline delafossite CuAlO2. J Nanosci Nanotechnol. 2008;8(8):4273–4278. doi:10.1166/jnn.2008.AN23
  • Abnavi H, Maram DK, Abnavi A. Performance analysis of several electron/hole transport layers in thin film MAPbI3-based perovskite solar cells: a simulation study. Opt Mater (Amst). 2021;118:111258. doi:10.1016/j.optmat.2021.111258
  • Alkhammash HI, Haque M. Device modelling and performance analysis of chalcogenide perovskite-based solar cell with diverse hole transport materials and back contact metals. Jpn J Appl Phys. 2023;62(1):0012006. doi:10.35848/1347-4065/acb11b
  • Shin SS, Lee SJ, Seok SI. Exploring wide bandgap metal oxides for perovskite solar cells. Apl Mater. 2019;7(2):022401. doi:10.1063/1.5055607.
  • Patel M, Ray A. Enhancement of output performance of Cu2ZnSnS4 thin film solar cells—a numerical simulation approach and comparison to experiments. Phys B. 2012;407(21):4391–4397. doi:10.1016/j.physb.2012.07.042
  • Karthick S, Velumani S, Bouclé J. Experimental and SCAPS simulated formamidinium perovskite solar cells: a comparison of device performance. Sol Energy. 2020;205:349–357. doi:10.1016/j.solener.2020.05.041
  • Shasti M, Mortezaali A. Numerical study of Cu2O, SrCu2O2, and CuAlO2 as hole-transport materials for application in Perovskite solar cells. Physica Status Solidi A. 2019;216(18):1900337. doi:https://doi.org/10.1002/pssa.201900337.
  • Hao F, Stoumpos CC, Cao DH, et al. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat Photonics. 2014;8(6):489–494. doi:10.1038/nphoton.2014.82
  • Kumar M, Askari SA, Ram SK, et al. Investigation of all-oxide thin-film solar cell with p-SnOx as absorber layer. IEEE Trans Electron Devices. 2022;69(3):1115–1122. doi:10.1109/TED.2022.3143077
  • Ghorbani E. On efficiency of earth-abundant chalcogenide photovoltaic materials buffered with CdS: the limiting effect of band alignment. J Physics Energy. 2020;2(2):0025002. doi:10.1088/2515-7655/ab6942
  • Yu X, Zou X, Cheng J, et al. Numerical simulation analysis of effect of energy band alignment and functional layer thickness on the performance for perovskite solar cells with Cd1-xZnxS electron transport layer. Mater Res Express. 2020;7(10):105906. doi:10.1088/2053-1591/abbf12
  • Ding C, Zhang Y, Liu F, et al. Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells. Nano Energy. 2018;53:17–26. doi:10.1016/j.nanoen.2018.08.031
  • Khattak YH, Baig F, Toura H, et al. CZTSe kesterite as an alternative hole transport layer for MASnI3 perovskite solar cells. J Electron Mater. 2019;48(9):5723–5733. doi:10.1007/s11664-019-07374-5
  • Katz EA, Faiman D, Tuladhar SM, et al. Temperature dependence for the photovoltaic device parameters of polymer-fullerene solar cells under operating conditions. J Appl Phys. 2001;90(10):5343–5350. doi:10.1063/1.1412270
  • Bai Z, Chen S-C, Lin S-S, et al. Review in optoelectronic properties of p-type CuCrO2 transparent conductive films. Surf Interfaces. 2021;22:100824. doi:10.1016/j.surfin.2020.100824
  • Kharangarh P, Misra D, Georgiou G, et al. Characterization of space charge layer deep defects in n+-CdS/p-CdTe solar cells by temperature dependent capacitance spectroscopy. J Appl Phys. 2013;113(14):144504. doi:10.1063/1.4800830
  • Wolff CM, Caprioglio P, Stolterfoht M, et al. Nonradiative recombination in perovskite solar cells, 2019.
  • Ghobadi A. Effect of interface defects on high efficient perovskite solar cells.
  • Zhou X, Han J. Design and simulation of C2N based solar cell by SCAPS-1D software. Mater Res Express. 2020;7(12):126303. doi:10.1088/2053-1591/abcdd6
  • Vasić A, Stojanović M, Osmokrović P, et al. The influence of ideality factor on fill factor and efficiency of solar cells. Mater Sci Forum. 2000;352:241–246. doi:10.4028/www.scientific.net/MSF.352.241
  • Jayan KD, Sebastian V, Kurian J. Simulation and optimization studies on CsPbI3 based inorganic perovskite solar cells. Sol Energy. 2021;221:99–108. doi:10.1016/j.solener.2021.04.030
  • Dhass AD, Natarajan E, Ponnusamy L. Influence of shunt resistance on the performance of solar photovoltaic cell. 2012 International Conference on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM); 2012 Dec 13–15. p. 382–386. doi:10.1109/ICETEEEM.2012.6494522
  • Gelderman K, Lee L, Donne SW. Flat-band potential of a semiconductor: using the Mott–Schottky equation. J Chem Educ. 2007;84(4):685. doi:10.1021/ed084p685
  • Cho A-N, Park N-G. Impact of interfacial layers in perovskite solar cells. ChemSusChem. 2017;10(19):3687–3704. doi:10.1002/cssc.201701095
  • Zhang F, Ma W, Guo H, et al. Interfacial oxygen vacancies as a potential cause of hysteresis in perovskite solar cells. Chem Mater. 2016;28(3):802–812. doi:10.1021/acs.chemmater.5b04019
  • Meng F, Liu K, Dai S, et al. A perylene diimide based polymer: a dual function interfacial material for efficient perovskite solar cells. Mater Chem Front. 2017;1(6):1079–1086. doi:10.1039/C6QM00309E
  • Ismail M, Noman M, Tariq Jan S, et al. Boosting efficiency of eco-friendly perovskite solar cell through optimization of novel charge transport layers. R Soc Open Sci. 2023;10(6):230331. doi:10.1098/rsos.230331
  • Savva A, Papadas IT, Tsikritzis D, et al. Inverted perovskite photovoltaics using flame spray pyrolysis solution based CuAlO2/Cu–O hole-selective contact. ACS Appl Energy Mater. 2019;2(3):2276–2287. doi:10.1021/acsaem.9b00070
  • Igbari F, Li M, Hu Y, et al. A room-temperature CuAlO2hole interfacial layer for efficient and stable planar perovskite solar cells. J Mater Chem A. 2016;4(4):1326–1335. doi:10.1039/C5TA07957H