265
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hirsutidin protects against hepatic injury by alcohol-induced oxidative stress in mice

ORCID Icon
Article: 2301131 | Received 08 Dec 2022, Accepted 28 Dec 2023, Published online: 19 Jan 2024

References

  • Osna NA, Donohue TM, Jr, Kharbanda KK. Alcoholic liver disease: pathogenesis and current Management. Alcohol Res Curr Rev. 2017;38:147–161.
  • Subramaniyan V, Chakravarthi S, Jegasothy R, et al. Alcohol-associated liver disease: a review on its pathophysiology, diagnosis and drug therapy. Toxicol Rep. 2021;8:376–385. doi:https://doi.org/10.1016/j.toxrep.2021.02.010.
  • Li X-X, Jiang Z-H, Zhou B, et al. Hepatoprotective effect of gastrodin against alcohol-induced liver injury in mice. J Physiol Biochem. 2019;75:29–37. doi:10.1007/s13105-018-0647-8
  • Ghosh Dastidar S, Warner JB, Warner DR, et al. Rodent models of alcoholic liver disease: role of binge ethanol administration. Biomolecules. 2018;8:3. doi:10.3390/biom8010003
  • Buzzetti E, Kalafateli M, Thorburn D, et al. Pharmacological interventions for alcoholic liver disease (alcohol-related liver disease): an attempted network meta-analysis. Cochrane Database Syst Rev. 2017;3:CD011646–CD011646. doi:10.1002/14651858.CD011646.pub2
  • Theise ND. Histopathology of alcoholic liver disease. Clin Liver Dis. 2013;2:64–67. doi:10.1002/cld.172
  • Hyun J, Han J, Lee C, et al. Pathophysiological aspects of alcohol metabolism in the liver. Int J Mol Sci. 2021;22:5717. doi:10.3390/ijms22115717
  • Mani V, Siddique AI, Arivalagan S, et al. Zingerone ameliorates hepatic and renal damage in alcohol-induced toxicity in experimental rats. Int J Nutr Pharmacol Neurol Dis. 2016;6:125. doi:10.4103/2231-0738.184585
  • Chen L, Liu L, Abdulla R, et al. Chemical components and hepatoprotective mechanism of xwak granule in mice treated with acute alcohol. Evid Based Complement Alternat Med. 2020;2020:8538474. doi:10.1155/2020/8538474
  • Cederbaum AI. Alcohol metabolism. Clin Liver Dis. 2012;16:667–685. doi:10.1016/j.cld.2012.08.002
  • Zakhari S. Overview: how is alcohol metabolized by the body? Alcohol Res Health. 2006;29:245–254.
  • Harjumäki R, Pridgeon CS, Ingelman-Sundberg M. Cyp2e1 in alcoholic and non-alcoholic liver injury. roles of ROS, reactive intermediates and lipid overload. Int J Mol Sci. 2021;22:8221. doi:10.3390/ijms22158221
  • Park JH, Lee DH, Park MS, et al. C-C chemokine receptor type 5 deficiency exacerbates alcoholic fatty liver disease through pro-inflammatory cytokines and chemokines-induced hepatic inflammation. J Gastroenterol Hepatol. 2017;32:1258–1264. doi:https://doi.org/10.1111/jgh.13657.
  • Sun L, Wen S, Li Q, et al. L-theanine relieves acute alcoholic liver injury by regulating the TNF-α/NF-κB signaling pathway in C57BL/6J mice. J Funct Foods. 2021;86:104699. doi:https://doi.org/10.1016/j.jff.2021.104699.
  • Li S, Tan H-Y, Wang N, et al. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci. 2015;16:26087–26124. doi:10.3390/ijms161125942
  • Fan G, Tang JJ, Bhadauria M, et al. Resveratrol ameliorates carbon tetrachloride-induced acute liver injury in mice. Environ Toxicol Pharmacol. 2009;28:350–356. doi:10.1016/j.etap.2009.05.013
  • Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxid Med Cell Longev. 2016;2016:3164734. doi:10.1155/2016/3164734
  • Snezhkina AV, Kudryavtseva AV, Kardymon OL, et al. ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev. 2019;2019:6175804. doi:10.1155/2019/6175804
  • Yang YM, Cho YE, Hwang S. Crosstalk between oxidative stress and inflammatory liver injury in the pathogenesis of alcoholic liver disease. Int J Mol Sci. 2022;23:774. doi:10.3390/ijms23020774
  • Askgaard G, Kjær MS, Tolstrup JS. Opportunities to prevent alcoholic liver cirrhosis in high-risk populations: a systematic review with meta-analysis. Am J Gastroenterol. 2019;114:221–232. doi:10.1038/s41395-018-0282-6
  • Rodriguez WE, Wahlang B, Wang Y, et al. Phosphodiesterase 4 inhibition as a therapeutic target for alcoholic liver disease: from bedside to bench. Hepatology. 2019;70:1958–1971. doi:10.1002/hep.30761
  • Bao Y-l, Wang L, Pan H-t, et al. Animal and organoid models of liver fibrosis. Front Physiol. 2021;12. doi:10.3389/fphys.2021.666138
  • Alappat B, Alappat J. Anthocyanin pigments: beyond aesthetics. Molecules. 2020;25:5500. doi:10.3390/molecules25235500
  • Tena N, Martín J, Asuero AG. State of the art of anthocyanins: antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants. 2020;9:451. doi:10.3390/antiox9050451
  • Nomi Y, Iwasaki-Kurashige K, Matsumoto H. Therapeutic effects of anthocyanins for vision and eye health. Molecules. 2019;24:3311. doi:10.3390/molecules24183311
  • Reis JF, Monteiro VVS, de Souza Gomes R, et al. Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies. J Transl Med. 2016;14:315–315. doi:10.1186/s12967-016-1076-5
  • Wallace TC. Anthocyanins in cardiovascular disease. Adv Nutr. 2011;2:1–7. doi:10.3945/an.110.000042
  • Sun X-h, Zhou T-t, Wei C-h, et al. Antibacterial effect and mechanism of anthocyanin rich Chinese wild blueberry extract on various foodborne pathogens. Food Control. 2018;94:155–161. doi:https://doi.org/10.1016/j.foodcont.2018.07.012.
  • Lin B-W, Gong C-C, Song H-F, et al. Effects of anthocyanins on the prevention and treatment of cancer. Br J Pharmacol. 2017;174:1226–1243. doi:10.1111/bph.13627
  • Xie L, Su H, Sun C, et al. Recent advances in understanding the anti-obesity activity of anthocyanins and their biosynthesis in microorganisms. Trends Food Sci Technol. 2018;72:13–24. doi:10.1016/j.tifs.2017.12.002
  • Azzini E, Giacometti J, Russo GL. Antiobesity effects of anthocyanins in preclinical and clinical studies. Oxidative Med Cell Longevity. 2017;2017:2740364. doi:10.1155/2017/2740364
  • Zhang J, Wu J, Liu F, et al. Neuroprotective effects of anthocyanins and its major component cyanidin-3-O-glucoside (C3G) in the central nervous system: an outlined review. Eur J Pharmacol. 2019;858:172500. doi:10.1016/j.ejphar.2019.172500
  • Toki K, Saito N, Irie Y, et al. 7-O-Methylated anthocyanidin glycosides from catharanthus roseus. Phytochemistry. 2008;69:1215–1219. doi:10.1016/j.phytochem.2007.11.005
  • Filippini R, Caniato R, Piovan A, et al. Production of anthocyanins by catharanthus roseus. Fitoterapia. 2003;74:62–67. doi:10.1016/S0367-326X(02)00296-4
  • Levy LF, Robinson R. CCCLXXIX.—experiments on the synthesis of anthocyanins. Part XIII. 5-β-grlucosidyl-and 5-lactosidyl-hirsutidin chlorides. J Chem Soc. 1931:2738–2742. doi:10.1039/JR9310002738
  • Bradley W, Robinson R, Schwarzenbach G. CVII.—A synthesis of pyrylium salts of anthocyanidin type. Part XIX. A synthesis of delphinidin chloride not involving a demethylation process, and syntheses of hirsutidin chloride and of delphinidin chloride 3′-methyl ether, possibly identical with petunidin chloride. J Chem Soc. 1930: 793–817. doi:10.1039/JR9300000793
  • Shahid Nadeem M, Khan JA, Al-Abbasi FA, et al. Protective effect of hirsutidin against rotenone-induced parkinsonism via inhibition of caspase-3/interleukins-6 and 1β. ACS Omega. 2023;8:13016–13025. doi:10.1021/acsomega.3c00201
  • Imam F, Kothiyal P, Alshehri S, et al. Hirsutidin prevents cisplatin-evoked renal toxicity by reducing oxidative stress/inflammation and restoring the endogenous enzymatic and non-enzymatic level. Biomedicines. 2023;11; doi:10.3390/biomedicines11030804
  • Alharbi KS, Al-Abbasi FA, Alzarea SI, et al. Effects of the anthocyanin hirsutidin on gastric ulcers: improved healing through antioxidant mechanisms. J Nat Prod. 2022;85:2406–2412. doi:10.1021/acs.jnatprod.2c00620
  • Wang S, Sui S, Liu Z, et al. Protective roles of hepatic gamma-aminobutyric acid signaling in acute ethanol exposure-induced liver injury. J Appl Toxicol. 2018;38:341–350. doi:10.1002/jat.3544
  • Nagarjun S, Dhadde SB, Veerapur VP, et al. Ameliorative effect of chromium-d-phenylalanine complex on indomethacin-induced inflammatory bowel disease in rats. Biomed Pharmacother. 2017;89:1061–1066. doi:10.1016/j.biopha.2017.02.042
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–77. doi:10.1016/0003-9861(59)90090-6
  • Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–3175. doi:10.1016/S0021-9258(19)45228-9
  • Aebi H, Wyss SR, Scherz B, et al. Heterogeneity of erythrocyte catalase II. Isolation and characterization of normal and variant erythrocyte catalase and their subunits. Eur J Biochem. 1974;48:137–145. doi:10.1111/j.1432-1033.1974.tb03751.x
  • Veerapur VP, Thippeswamy BS, Prabhakar KR, et al. Antioxidant and renoprotective activities of Ficus racemosa Linn. stem bark: bioactivity guided fractionation study. Biomed Prev Nutr. 2011;1:273–281. doi:https://doi.org/10.1016/j.bionut.2011.06.002.
  • Wills ED. Mechanisms of lipid peroxide formation in animal tissues. Biochem J. 1966;99:667–676. doi:10.1042/bj0990667
  • Nagakannan P, Shivasharan BD, Thippeswamy BS, et al. Restoration of brain antioxidant status by hydroalcoholic extract of Mimusops elengi flowers in rats treated with monosodium glutamate. J Environ Pathol Toxicol Oncol. 2012;31:213–221. doi:10.1615/JEnvironPatholToxicolOncol.v31.i3.30
  • Jiang Z, Chen C, Xie W, et al. Anthocyanins attenuate alcohol-induced hepatic injury by inhibiting pro-inflammation signalling. Nat Prod Res. 2016;30:469–473. doi:10.1080/14786419.2015.1020492
  • Nkosi C, Opoku A, Terblanche S. Effect of pumpkin seed (Cucurbita pepo) protein isolate on the activity levels of certain plasma enzymes in CCl4-induced liver injury in low-protein fed rats. Phytother Res. 2005;19:341–345.
  • Ohashi K, Pimienta M, Seki E. Alcoholic liver disease: a current molecular and clinical perspective. Liver Research. 2018;2:161–172. doi:https://doi.org/10.1016/j.livres.2018.11.002.
  • Phukan JP, Sinha A, Deka JP. Serum lipid profile in alcoholic cirrhosis: a study in a teaching hospital of north-eastern India. Niger Med J. 2013;54:5–9. doi:10.4103/0300-1652.108886
  • Tan HK, Yates E, Lilly K, et al. Oxidative stress in alcohol-related liver disease. World J Hepatol. 2020;12:332–349. doi:10.4254/wjh.v12.i7.332
  • Ambade A, Mandrekar P. Oxidative stress and inflammation: essential partners in alcoholic liver disease. Int J Hepatol. 2012;2012:853175. doi:10.1155/2012/853175
  • Galicia-Moreno M, Gutiérrez-Reyes G. The role of oxidative stress in the development of alcoholic liver disease. Rev Gastroenterol Mex Engl Ed. 2014;79:135–144. doi:https://doi.org/10.1016/j.rgmxen.2014.06.007.
  • Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011;141:1572–1585. doi:10.1053/j.gastro.2011.09.002
  • Sultana B, Yaqoob S, Zafar Z, et al. Escalation of liver malfunctioning: a step toward herbal awareness. J Ethnopharmacol. 2018;216:104–119. doi:10.1016/j.jep.2018.01.002
  • Niederreiter L, Tilg H. Cytokines and fatty liver diseases. Liver Res. 2018;2:14–20. doi:10.1016/j.livres.2018.03.003
  • Liu J, Zhou H, Song L, et al. Promising natural products with diverse pharmacological activities. Molecules. 2021;26:3807. doi:10.3390/molecules26133807
  • Wang M, Sun J, Jiang Z, et al. Hepatoprotective effect of kaempferol against alcoholic liver injury in mice. Am J Chin Med. 2015;43:241–254. doi:10.1142/S0192415X15500160