826
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Facile synthesis of NiMn2O4/ZnMn2O4 heterostructure nanocomposite for visible-light-driven degradation of methylene blue dye

, , , , , , , , & show all
Article: 2302656 | Received 03 Mar 2023, Accepted 08 Sep 2023, Published online: 01 Feb 2024

References

  • Liu L, Chen Z, Zhang J, et al. Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: a review. J Water process Eng. 2021;42:102122-19. doi:10.1016/j.jwpe.2021.102122
  • Akhundi A, Habibi-Yangjeh A, Abitorabi M. Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts. Catal Rev. 2019;61(4):595–628. doi:10.1080/01614940.2019.1654224
  • Munawar T, Sardar S, Mukhtar F, et al. Fabrication of fullerene-supported La2O3–C60 nanocomposites: dual-functional materials for photocatalysis and supercapacitor electrodes. Phys Chem Chem Phys. 2023;25(9):7010–7027. doi:10.1039/D2CP05357H
  • Nisa MU, Abid AG, Gouadria S, et al. Boosted electron-transfer/separation of SnO2/CdSe/Bi2S3 heterostructure for excellent photocatalytic degradation of organic dye pollutants under visible light. Surf Interf. 2022;31:102012-13. doi:10.1016/j.surfin.2022.102012
  • Taghavi Fardood S, Ramazani A, Asiabi P. A novel green synthesis of copper oxide nanoparticles using a henna extract powder. J Struct Chem. 2018;59:1737–1743. doi:10.1134/S0022476618070302
  • Kurade MB, Ha Y-H, Xiong J-Q, et al. Phytoremediation as a green biotechnology tool for emerging environmental pollution: a step forward towards sustainable rehabilitation of the environment. Chem Eng J. 2021;415:129040-19. doi:10.1016/j.cej.2021.129040
  • Sojobi AO, Zayed J. Impact of sewer overflow on public health: a comprehensive scientometric analysis and systematic review. Environ Res. 2022;203:111609-29. doi:10.1016/j.envres.2021.111609
  • Munawar T, Fatima S, Nadeem MS, et al. Tunability of physical properties of NiO by the introduction of rare earth metal (Y, Ho) dual doping for natural sunlight-driven photocatalysis. J Mater Sci: Mater Electr. 2023;34(7):1–24. doi:10.1007/s10854-023-10095-5
  • Guo R-t, Wang J, Bi Z-x, et al. Recent advances and perspectives of g–C3N4–based materials for photocatalytic dyes degradation. Chemosphere; 2022:133834-17.
  • Yu H, Jiang L, Wang H, et al. Modulation of Bi2MoO6-based materials for photocatalytic water splitting and environmental application: a critical review. Small. 2019;15(23):1901008-30. doi:10.1002/smll.201901008
  • Tolliver C, Keeley AR, Managi S. Drivers of green bond market growth: the importance of nationally determined contributions to the Paris agreement and implications for sustainability. J Cleaner Prod. 2020;244:118643-15. doi:10.1016/j.jclepro.2019.118643
  • Wang L, Zhu Z, Wang F, et al. State-of-the-art and prospects of Zn-containing layered double hydroxides (Zn-LDH)-based materials for photocatalytic water remediation. Chemosphere. 2021;278:130367-20. doi:10.1016/j.chemosphere.2021.130367
  • Moradnia F, Fardood ST, Ramazani A, et al. Green synthesis of recyclable MgFeCrO4 spinel nanoparticles for rapid photodegradation of direct black 122 dye. J Photochem Photobiol A. 2020;392:112433-6. doi:10.1016/j.jphotochem.2020.112433
  • Moradnia F, Fardood ST, Ramazani A, et al. Magnetic Mg0. 5Zn0. 5FeMnO4 nanoparticles: green sol-gel synthesis, characterization, and photocatalytic applications. J Cleaner Prod. 2021;288:125632-13. doi:10.1016/j.jclepro.2020.125632
  • Moradnia F, Taghavi Fardood S, Ramazani A, et al. Green sol–gel synthesis of CoMnCrO4 spinel nanoparticles and their photocatalytic application. Micro Nano Lett. 2020;15(10):674–677. doi:10.1049/mnl.2020.0189
  • Al-Tohamy R, Ali SS, Li F, et al. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf. 2022;231:113160-17. doi:10.1016/j.ecoenv.2021.113160
  • Akhundi A, Zaker Moshfegh A, Habibi-Yangjeh A, et al. Simultaneous dual-functional photocatalysis by g-C3N4-based nanostructures. ACS ES&T Engineering. 2022;2(4):564–585. doi:10.1021/acsestengg.1c00346
  • Ali SA, Ahmad TJ. Chemical strategies in molybdenum based chalcogenides nanostructures for photocatalysis. Int J Hydrogen Energy. 2022;47:29255–29283.
  • Akhundi A, Badiei A, Ziarani GM, et al. Graphitic carbon nitride-based photocatalysts: toward efficient organic transformation for value-added chemicals production. Molecular Catalysis. 2020;488:110902-14. doi:10.1016/j.mcat.2020.110902
  • Mukhtar F, Munawar T, Nadeem MS, et al. Multi metal oxide NiO-Fe2O3-CdO nanocomposite-synthesis, photocatalytic and antibacterial properties. Appl Phys A. 2020;126:1–14. doi:10.1007/s00339-019-3176-6
  • Alahmari F, Almessiere M, Ünal B, et al. . Electrical and optical properties of Ni0· 5Co0. 5-xCdxNd0. 02Fe1·78O4 (x≤ 0.25) spinel ferrite nanofibers. Ceram Int. 2020;46(15):24605–24614. doi:10.1016/j.ceramint.2020.06.249
  • Mukhtar F, Munawar T, Nadeem MS, et al. Enhancement in carrier separation of ZnO-Ho2O3-Sm2O3 hetrostuctured nanocomposite with rGO and PANI supported direct dual Z-scheme for antimicrobial inactivation and sunlight driven photocatalysis. Adv Powder Technol. 2021;32(10):3770–3787. doi:10.1016/j.apt.2021.08.022
  • Mukhtar F, Munawar T, Nadeem MS, et al. Highly efficient tri-phase TiO2–Y2O3–V2O5 nanocomposite: Structural, optical, photocatalyst, and antibacterial studies. Journal of Nanostructure in Chemistry. 2022;12:547–564.
  • Mukhtar F, Munawar T, Nadeem MS, et al. Enhanced sunlight-absorption of Fe2O3 covered by PANI for the photodegradation of organic pollutants and antimicrobial inactivation. Adv Powder Technol. 2022;33(8):103708-15. doi:10.1016/j.apt.2022.103708
  • Rohokale MS, Dhabliya D, Sathish T, et al. A novel two-step co-precipitation approach of CuS/NiMn2O4 heterostructured nanocatalyst for enhanced visible light driven photocatalytic activity via efficient photo-induced charge separation properties. Phys B. 2021;610:412902-7. doi:10.1016/j.physb.2021.412902
  • Wang L, Zhao X, Lu Y, et al. CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries. J Electrochem Soc. 2011;158(12):A1379-8 . doi:10.1149/2.068112jes
  • Hassanzadeh-Tabrizi S, Pournajaf R, Moradi-Faradonbeh A, et al. Nanostructured CuAl2O4: Co-precipitation synthesis, optical and photocatalytic properties. Ceram Int. 2016;42(12):14121–5. doi:10.1016/j.ceramint.2016.06.026
  • Sahli N, Petit C, Roger A-C, et al. Ni catalysts from NiAl2O4 spinel for CO2 reforming of methane. Catal Today. 2006;113(3-4):187–193. doi:10.1016/j.cattod.2005.11.065
  • Luo L, Qiao H, Chen K, et al. Fabrication of electrospun ZnMn2O4 nanofibers as anode material for lithium-ion batteries. Electrochim Acta. 2015;177:283–289. doi:10.1016/j.electacta.2015.01.100
  • Tomas M. Corrosion of ferritic stainless steels used in solid oxide fuel cells-investigation of novel coatings in single-and dual-atmosphere conditions: chalmers Tekniska Hogskola (Sweden); 2022.
  • Taghavi Fardood S, Ramazani A, Golfar Z, et al. Green synthesis using tragacanth gum and characterization of Ni–Cu–Zn ferrite nanoparticles as a magnetically separable catalyst for the synthesis of hexabenzylhexaazaisowurtzitane under ultrasonic irradiation. J Struct Chem. 2018;59:1730–1736. doi:10.1134/S0022476618070296
  • Kiani MT, Ramazani A, Taghavi Fardood S. Green synthesis and characterization of Ni0. 25Zn0.75Fe2O4 magnetic nanoparticles and study of their photocatalytic activity in the degradation of aniline. Appl Organomet Chem. 2023;37(4):7053-11. doi:10.1002/aoc.7053
  • Zhu S, Ho S-H, Jin C, et al. Nanostructured manganese oxides: natural/artificial formation and their induced catalysis for wastewater remediation. Environmental Science: Nano. 2020;7(2):368–396. doi:10.1039/C9EN01250H
  • Sabri M, Habibi-Yangjeh A, Rahim Pouran S, et al. Titania-activated persulfate for environmental remediation: the-state-of-the-art. Catalysis Review. 2023;65:118–173.
  • Elshypany R, Selim H, Zakaria K, et al. Elaboration of Fe3O4/ZnO nanocomposite with highly performance photocatalytic activity for degradation methylene blue under visible light irradiation. Environmental Technology & Innovation. 2021;23:101710-13. doi:10.1016/j.eti.2021.101710
  • Elshypany R, Selim H, Zakaria K, et al. Magnetic ZnO crystal nanoparticle growth on reduced graphene oxide for enhanced photocatalytic performance under visible light irradiation. Molecules. 2021;26(8):2269-16. doi:10.3390/molecules26082269
  • Li Z, Wang K, Zhang J, et al. Enhanced photocatalytic activity of hierarchical Bi2WO6 microballs by modification with noble metals. Catalysts. 2022;12(2):130-13. doi:10.3390/catal12020130
  • Nada AA, Bekheet MF, Roualdes S, et al. Functionalization of MCM-41 with titanium oxynitride deposited via PECVD for enhanced removal of methylene blue. J Mol Liq. 2019;274:505–515. doi:10.1016/j.molliq.2018.10.154
  • Nada AA, Nasr M, Viter R, et al. Mesoporous ZnFe2O4@ TiO2 nanofibers prepared by electrospinning coupled to PECVD as highly performing photocatalytic materials. J Phys Chem C. 2017;121(44):24669–24677. doi:10.1021/acs.jpcc.7b08567
  • Garcia-Muñoz P, Fresno F, de la Peña O’Shea VA, et al. Ferrite materials for photoassisted environmental and solar fuels applications. In: Munoz-Batista MJ, Munoz AN, Luque R, editors. Heterogeneous photocatalysis recent advances. Cham: Springer.
  • Dang X, Xie M, Dai F, et al. Ultrathin 2D/2D ZnIn2S4/g-C3N4 nanosheet heterojunction with atomic-level intimate interface for photocatalytic hydrogen evolution under visible light. Adv Mater Inter. 2021;8(10):2100151-9.
  • Samira M, Hassana HH, El-Maghrabid HH, et al. Fabrication of titanium dioxide/reduced graphene oxide nanofibers for photodegradation of tartrazine dye in aqueous solution. Desal water Treat. 2022;255:110–119. doi:10.5004/dwt.2022.28327
  • Nada AA, Tantawy HR, Elsayed MA, et al. Elaboration of nano titania-magnetic reduced graphene oxide for degradation of tartrazine dye in aqueous solution. Solid State Sci. 2018;78:116–125. doi:10.1016/j.solidstatesciences.2018.02.014
  • Hou L, Li W, Wu Z, et al. Embedding ZnCdS@ ZnIn2S4 into thiazole-modified g-C3N4 by electrostatic self-assembly to build dual Z-scheme heterojunction with spatially separated active centers for photocatalytic H2 evolution and ofloxacin degradation. Sep Purif Technol. 2022;290:120858-14. doi:10.1016/j.seppur.2022.120858
  • Hassani A, Krishnan S, Scaria J, et al. Z-scheme photocatalysts for visible-light-driven pollutants degradation: a review on recent advancements. Current Opinion in Solid State & Material Science. 2021;25(5):100941-25. doi:10.1016/j.cossms.2021.100941
  • Li Y, Gu M, Zhang X, et al. 2D g-C3N4 for advancement of photo-generated carrier dynamics: status and challenges. Mater Today. 2020;41:270–303. doi:10.1016/j.mattod.2020.09.004
  • Munawar T, Nadeem MS, Mukhtar F, et al. Transition metal-doped SnO2 and graphene oxide (GO) supported nanocomposites as efficient photocatalysts and antibacterial agents. Environ Sci Pollut Res. 2022;29(60):90995–91016. doi:10.1007/s11356-022-22144-3
  • Mohammed R, Ali MEM, Gomaa E, et al. Promising MoS2-ZnO Hybrid nanocomposite photocatalyst for antibiotics, and dyes remediation in wastewater applications. Environ Nanotechn, Monit Manag. 2023;19:100772-14.
  • Wang J, Wang M, Kang J, et al. The promoted tetracycline visible-light-driven photocatalytic degradation efficiency of g-C3N4/FeWO4 Z-scheme heterojunction with peroxymonosulfate assisting and mechanism. Sep Purif Technol. 2022;296:121440-12. doi:10.1016/j.seppur.2022.121440
  • Zhang W, Ma Y, Zhu X, et al. Fabrication of Ag decorated g-C3N4/LaFeO3 Z-scheme heterojunction as highly efficient visible-light photocatalyst for degradation of methylene blue and tetracycline hydrochloride. J Alloys Compd. 2021;864:158914-12. doi:10.1016/j.jallcom.2021.158914
  • Mohammad A, Khan ME, Cho MH, et al. Fabrication of binary SnO2/TiO2 nanocomposites under a sonication-assisted approach: tuning of band-gap and water depollution applications under visible light irradiation. Ceram Int. 2021;47(11):15073–15081. doi:10.1016/j.ceramint.2021.02.152
  • Heo JN, Son N, Shin J, et al. Efficient hydrogen production by low-temperature steam reforming of propane using catalysts with very small amounts of Pt loaded on NiMn2O4 particles. Int J Chem Reactor Eng. 2020;45(41):20904–20921.
  • Taghavi Fardood S, Moradnia F, Ramazani A. Green synthesis and characterisation of ZnMn2O4 nanoparticles for photocatalytic degradation of Congo red dye and kinetic study. Micro Nano Lett. 2019;14(9):986–991. doi:10.1049/mnl.2019.0071
  • Alam U, Verma NJC, Physicochemical SA. Direct Z-scheme-based novel cobalt nickel tungstate/graphitic carbon nitride composite: enhanced photocatalytic degradation of organic pollutants and oxidation of benzyl alcohol. Colloids Surf, A. 2021;630:127606-12. doi:10.1016/j.colsurfa.2021.127606
  • Mukhtar F, Munawar T, Nadeem MS, et al. Dual S-scheme heterojunction ZnO–V2O5–WO3 nanocomposite with enhanced photocatalytic and antimicrobial activity. Mat Chem Phys. 2021;263:124372-13. doi:10.1016/j.matchemphys.2021.124372
  • Bashir A, Munawar T, Mukhtar F, et al. Dual-functional fullerene supported NiO-based nanocomposite: efficient electrocatalyst for OER and photocatalyst for MB dye degradation. Mat Chem Phys. 2023;293:126886-14. doi:10.1016/j.matchemphys.2022.126886
  • Nisa MU, Gouadria S, Houda S, et al. Coral like gadolinium doped hematite nanostructure as stable and robust electrocatalyst for oxygen evolution water splitting. Fuel. 2023;338:127313-11. doi:10.1016/j.fuel.2022.127313
  • Brunold TC, Tamura N, Kitajima N, et al. Spectroscopic study of [Fe2 (O2)(OBz) 2 {HB (pz ‘) 3} 2]: nature of the μ-1, 2 Peroxide− Fe (III) bond and its possible relevance to O2 activation by non-heme iron enzymes. J Am Chem Soc. 1998;120(23):5674–5690. doi:10.1021/ja980129x
  • Nisa MU, Manzoor S, Abid AG, et al. CdSe supported SnO2 nanocomposite with strongly hydrophilic surface for enhanced overall water splitting. Fuel. 2022;321:124086-10. doi:10.1016/j.fuel.2022.124086
  • Idris AO, Mafa PJ, Oseghe EO, et al. A facile approach for the preparation of NiONPs@ MnO2 NRs nanocomposite material and its photocatalytic activity. J Nanopart Res. 2021;23:1–14. doi:10.1007/s11051-020-05135-8
  • Nada AA, Bekheet MF, Viter R, et al. BN/GdxTi (1-x) O (4-x)/2 nanofibers for enhanced photocatalytic hydrogen production under visible light. Appl Catal, B. 2019;251:76–86. doi:10.1016/j.apcatb.2019.03.043
  • Zuo Z, Li Y. Emerging electrochemical energy applications of graphdiyne. Joule. 2019;3(4):899–903. doi:10.1016/j.joule.2019.01.016
  • Xue Y, Huang B, Yi Y, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat Commun. 2018;9(1):1460-10. doi:10.1038/s41467-018-03896-4
  • Zhang L, Mohamed HH, Dillert R, et al. Kinetics and mechanisms of charge transfer processes in photocatalytic systems: a review. Journal of Photochemistry and Photobiology C. 2012;13(4):263–276. doi:10.1016/j.jphotochemrev.2012.07.002
  • Hammache Z, Soukeur A, Omeiri S, et al. Physical and photo-electrochemical properties of MgFe2O4 prepared by sol gel route: application to the photodegradation of methylene blue. J Mater Sci: Mater Electron. 2019;30:5375–5382. doi:10.1007/s10854-019-00830-2
  • Charradi K, Ahmed Z, BenMoussa MA, et al. A facile approach for the synthesis of spinel zinc ferrite/cellulose as an effective photocatalyst for the degradation of methylene blue in aqueous solution. Cellulose. 2022;29:2565–2576.
  • Ajithkumar Mohana P, Sumathi S. Synthesis, characterization, optical and photocatalytic activity of yttrium and copper co-doped zinc ferrite under visible light. J Mater Sci: Mater Electron. 2020;31:1168–1182. doi:10.1007/s10854-019-02628-8
  • Abroshan E, Farhadi S, Zabardasti A. Novel magnetically separable Ag3PO4/MnFe2O4 nanocomposite and its high photocatalytic degradation performance for organic dyes under solar-light irradiation. Sol Ener Mater Sol Cell. 2018;178:154–163. doi:10.1016/j.solmat.2018.01.026
  • Padmapriya G, Manikandan A, Krishnasamy V, et al. Spinel NixZn1− xFe2O4 (0.0 ≤ x≤ 1.0) nano-photocatalysts: synthesis, characterization and photocatalytic degradation of methylene blue dye. J Mol Struct. 2016;1119:39–47. doi:10.1016/j.molstruc.2016.04.049
  • Hosseini S, Azizi N. New insight into highly efficient CSA@g-C3N4 for photocatalytic oxidation of benzyl alcohol and thioanisole: NAEDS as a promoter of photoactivity under blue LED irradiation. PhotoChem. PhotoBio. 2023: 1–214966.
  • Shao R, Sun L, Tang L, et al. Preparation and characterization of magnetic core–shell ZnFe2O4@ ZnO nanoparticles and their application for the photodegradation of methylene blue. Chem Eng J. 2013;217:185–191. doi:10.1016/j.cej.2012.11.109
  • Sharma R, Singhal S. Structural, magnetic and electrical properties of zinc doped nickel ferrite and their application in photo catalytic degradation of methylene blue. Phys B. 2013;414:83–90. doi:10.1016/j.physb.2013.01.015
  • Agboola PO, Shakir I, Haider S. Development of internal electric field induced NiFe2O4/CdO pn nano-heterojunctions for solar light activated photodegradation of methylene blue dye. Ceram Int. 2022;48(10):13572–9. doi:10.1016/j.ceramint.2022.01.236
  • Nadeem MS, Munawar T, Mukhtar F, et al. Facile synthesis of sunlight driven photocatalysts Zn0. 9Ho0. 05M0. 05O (M = Pr, Sm, Er) for the removal of synthetic dyes from wastewater. Surfaces and Interfaces. 2022;34:102376-14. doi:10.1016/j.surfin.2022.102376