292
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The impact of large volume atmospheric pressure air glow discharge plasma on enhancing denim fabric (textile) sewing process

ORCID Icon & ORCID Icon
Article: 2303814 | Received 01 Aug 2020, Accepted 05 Jan 2024, Published online: 28 Jan 2024

References

  • Haghighat E, Etrati SM, Najar SS. Modeling of needle penetration force in denim fabric. Int J Cloth Sci Technol. 2013;25:361–379. doi:10.1108/IJCST-01-2012-0031
  • Haji A, Naebe M. Cleaner dyeing of textiles using plasma treatment and natural dyes: A review. J Clean Prod. 2020;265:121866. doi:10.1016/j.jclepro.2020.121866.
  • Hossain MY, Liang Y, Pervez MN, et al. Effluent-free deep dyeing of cotton fabric with cacao husk extracts using the Taguchi optimization method. Cellulose. 2021;28:517. doi:10.1007/s10570-020-03525-8.
  • Kan C, Lam C. Atmospheric Pressure Plasma Treatment for Grey Cotton Knitted Fabric. Polymers (Basel). 2018;10:53. doi:10.3390/polym10010053.
  • Kan CW, Yuen CWM, Hung ON. Improving the pilling property of knitted wool fabric with atmospheric pressure plasma treatment. Surf Coat Technol. 2013;228:S588. doi:10.1016/j.surfcoat.2011.10.062.
  • Thakker AM, Sun D, Bucknall D. Inkjet printing of plasma surface–modified wool and cotton fabrics with plant-based inks. Environ Sci Pollut Res. 2022;29:68357. doi:10.1007/s11356-022-20659-3.
  • Kan CW, Yuen CWM. Effect of atmospheric pressure plasma treatment on the desizing and subsequent colour fading process of cotton denim fabric. Color Technol. 2012;128:356. doi:10.1111/j.1478-4408.2012.00388.x.
  • Zhang Y, Matthews S, Tran ATT, and Hyland, etal. Effects of interfacial heat transfer, surface tension and contact angle on the formation of plasma-sprayed droplets through simulation study. Surf Coat Technol. 2016;307:807–816. doi:10.1016/j.surfcoat.2016.09.066
  • Jelil RA. A review of low-temperature plasma treatment of textile materials. J Mater Sci. 2015;50(18):5913–5943. doi:10.1007/s10853-015-9152-4
  • Shishoo R. Plasma technologies for textiles. Cambridge: Woodhead Publishing Limited; 2007.
  • Massines F, Rabehi A, Decomps P, et al. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. J Appl Phys. 1998;6:2950–2957. doi:10.1063/1.367051
  • Konelschatz U, Eliasson B, Egli W. Dielectric-Barrier Discharges. Principle and Applications. J Phys. 1997;7:47. doi:10.1051/JP4:1997405 Corpus ID: 85452836.
  • Tschiersch R, Nemschokmichal S, Bogaczyk M, et al. Surface charge measurements on different dielectrics in diffuse and filamentary barrier discharges. J Phys D Appl Phys. 2017;50(10):105207. doi:10.1088/1361-6463/aa5605
  • Baránková H, Bárdoš L. Fused hollow cathode cold atmospheric plasma. Appl Phys Lett. 2000;76:285. doi:10.1063/1.125723.
  • Schütze A, Jeong JY, Babayan SE, et al. The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Trans Plasma Sci. 1998;26:1685. doi:10.1109/27.747887.
  • Akishev YS, Deryugin AA, Kochetov IV, et al. DC glow discharge in air flow at atmospheric pressure in connection with waste gases treatment. J Phys D Appl Phys. 1993;26:1630. doi:10.1088/0022-3727/26/10/014.
  • Mohamed A-AH, Aljuhani MM, Almarashi JQM, et al. The effect of a second grounded electrode on the atmospheric pressure argon plasma jet. Plasma Res Express; 2:015011. doi:10.1088/2516-1067/ab7b36.
  • Song Y, Liu D, Wang w, et al. The Brush-Shape Device Used to Generate Atmospheric and Homogeneous Plasmas for Biomedical Applications. Plasma Process Polym. 2013;10:88. doi:10.1002/ppap.201200042.
  • Stark RH, Schoenbach KH. Direct current glow discharges in atmospheric air. Appl Phys Lett. 1999;74:3770. doi:10.1063/1.124174.
  • Laroussi M, Anderson1 WT. Attenuation of Electromagnetic Waves by a Plasma Layer at Atmospheric Pressure. Int J Infrared and Millimeter Waves. 1998;19:453. doi:10.1023/A:1022559710578.
  • Bauer G. Plasma Medicine. Plasma Med. 2019;9:57. doi:10.1615/PlasmaMed.2019029462.
  • Weltmann KD, Kolb JF, Holub M, et al. The future for plasma science and technology. Plasma Process Polym. 2019;16(1):e1800118. doi:10.1002/ppap.201800118
  • Sakudo A, Yagyu Y, Onodera T. Disinfection and sterilization using plasma technology: fundamentals and future perspectives for biological applications. Int J Mol Sci. 2019;20:5216. doi:10.3390/ijms20205216
  • Bekeschus S, Favia P, Robert E, et al. White paper on plasma for medicine and hygiene: Future in plasma health sciences. Plasma Process Polym. 2019;16:e1800033. doi:10.1002/ppap.201800033.
  • Fadhlalmawla SA, Mohamed A-AH, Almarashi JQM, etal. The impact of cold atmospheric pressure plasma jet on seed germination and seedlings growth of fenugreek. Plasma Sci Technol2019;21:105503. doi:10.1088/2058-6272/ab2a3e.
  • Deng X, Nikiforov AY, Coenye TC, et al. Antimicrobial nano-silver non-woven polyethylene terephthalate fabric via an atmospheric pressure plasma deposition process. Sci Rep. 2015;5:10138. doi:10.1038/srep10138.
  • Akter S. Medical textiles: significance and future prospect in Bangladesh”. Eur Sci J. 2014;10:488–502.
  • Sasmazel HT, Manolache S, Gümüsderelioglu M. Functionalization of nonwoven Pet fabrics by water/O2 plasma for biomolecule mediated cell cultivation. Plasma Process Polym. 2010;7:588. doi:10.1002/ppap.200900096
  • Kan CW, Lam CF, Chan CK, et al. Using atmospheric pressure plasma treatment for treating grey cotton fabric. Carbohydr Polym. 2014;102:167. doi:10.1016/j.carbpol.2013.11.015.
  • Ullah MH, Akther H, Rahman MM, et al. Surface modification and improvements of wicking properties and dyeability of grey jute-cotton blended fabrics using low-pressure glow discharge air plasma. Heliyon. 2021;7:e07893. doi:10.1016/j.heliyon.2021.e07893.
  • Li D, Xu K, Zhang Y. A Review on Research Progress in Plasma-Controlled Superwetting Surface Structure and Properties. Polymers (Basel). 2022;14:3759. doi:10.3390/polym14183759.
  • Cai ZS, Qiu YP. The mechanism of air/oxygen/helium atmospheric plasma action on PVA. J Appl Polym Sci. 2006;99:2233–2237. doi:10.1002/app.22307
  • Šimončicová J, Kryštofová S, Medvecká V, et al. Technical applications of plasma treatments: current state and perspectives. Appl Microbiol Biotechnol. 2019;103:5117. doi:10.1007/s00253-019-09877-x.
  • Manjula S, Shanmugasundaram OL, Ponappa K. Optimization of plasma process parameters for surface modification of bamboo spunlace nonwoven fabric using glow discharge oxygen plasma. J Indus Text. 2021;51(2):225–245. doi:10.1177/1528083719871265.
  • Frías E, Iglesias Y, Alvarez-Ordóñez A, et al. Evaluation of Cold Atmospheric Pressure Plasma (CAPP) and plasma-activated water (PAW) as alternative non-thermal decontamination technologies for tofu: Impact on microbiological, sensorial and functional quality attributes. Food Res Int. 2020;129:108859. doi:10.1016/j.foodres.2019.108859.
  • Rogina-Car B, Kovačević S. The study of needle type influence on woven fabric surface area during the sewing process. Text Res J. 2022;92:3016–3033. doi:10.1177/00405175211019133
  • Höcker H. Plasma treatment of textile fibers. Pure Appl Chemist. 2002;74:423. doi:10.1351/pac200274030423.
  • Bruggeman PJ, Felipe F, Brandenburg R. Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Sci Technol. 2017;26:123002. doi:10.1088/1361-6595/aa97af.
  • Raud J, Laan M, Jõgi I. Rotational temperatures of N2(C,0) and OH(A,0) as gas temperature estimates in the middle pressure Ar/O2 discharge. J Phys D Appl Phys. 2011;44:345201. doi:10.1088/0022-3727/44/34/345201
  • Cho J, Cho G. Determining the Psychoacoustic Parameters That Affect Subjective Sensation of Fabric Sounds at Given Sound Pressures. Text Res J. 2007;77:29. doi:10.1177/0040517507074023.
  • Bokhan PA, Gugin PP, Lavrukhin MA, et al. Nanosecond pulse breakdown in noble gases. Phys Plasmas. 2023;30:043504. doi:10.1063/5.0138062
  • Mohamed A-AH, Al-Mashraqi AA, Shariff SM, et al. Generation of large volume atmospheric pressure air plasma. IEEE Trans Plasma Sci. 2014;42(10):2488–2489. doi:10.1109/TPS.2014.2324999
  • Mohamed A-AH, Block R, Schoenbach KH. Direct current glow discharges in atmospheric air. IEEE Trans Plasma Sci. 2002;30(1):182–183. doi:10.1109/TPS.2002.1003984
  • Zhang H, Zhu J. A general empirical formula of current–voltage characteristics for point-to-plane geometry corona discharges. J Phys D Appl Phys. 2008;41:065209. doi:10.1088/0022-3727/41/6/065209
  • Seo YS, Lee HW, Mohamed A-AH, et al. Correlation of striated discharge patterns with operating conditions in helium and argon atmospheric-pressure plasma jets. IEEE Trans Plasma Sci. 2011;39:2324–2325. doi:10.1109/TPS.2011.2159400
  • Bhat N, Netravali A, Gore A, et al. Surface modification of cotton fabrics using plasma technology. Text Res J. 2011;81:1014. doi:10.1177/0040517510397574.
  • Vijayalakshmi KA, Karthikeyan N, Vignesh K. Surface Modification of Spandex Fiber Using Low Temperature Plasma International Journal of Science and Research (IJSR), ISSN (Online): 2319-7064, Impact Factor (2012): 3.358. www.ijsr.net 2014.
  • Ngo H-T, Vu Thi Hong K, Nguyen T-B. Surface Modification by the DBD Plasma to Improve the Flame-Retardant Treatment for Dyed Polyester Fabric. Polymers (Basel). 2021;13:3011. doi:10.3390/polym13173011.
  • Väänänen R, Heikkilä P, Tuominen M, et al. Fast and efficient surface treatment for nonwoven materials by atmospheric pressure plasma-. AUTEX Res J. 2010;10 8. http://www.autexrj.com/cms/zalaczone_pliki/2_328.pdf.
  • Bhat N, Netravali A, Gore A, et al. Surface modification of cotton fabrics using plasma technology. Textile Res J. 2011;81:1014–1026. doi:10.1177/0040517510397574
  • Yun YI, Kim KS, Uhm SJ, et al. Aging behavior of oxygen plasma-treated polypropylene with different crystallinities. J Adhes Sci Technol. 2004;18:1279. doi:10.1163/1568561041588200.