393
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical simulation on thermohydraulic performance of different types of nanofluids in a corrugated-triangular channel

, , , , , & ORCID Icon show all
Article: 2306671 | Received 24 Feb 2023, Accepted 13 Jan 2024, Published online: 22 Jan 2024

References

  • Esmaeili M, Sadeghy K, Moghaddami M. Heat transfer enhancement of wavy channels using Al2O3 nanoparticles. J Enhanced Heat Transfer. 2010;17(2):139–151.
  • Elshafei EAM, Awad MM, El-Negiry E, et al. Heat transfer and pressure drop in corrugated channels. Energy. 2010;35(1):101–110.
  • Ahmed MA, Shuaib NH, Yusoff MZ, et al. Numerical investigations of flow and heat transfer enhancement in a corrugated channel using nanofluid. Int Commun Heat Mass Transfer. 2011;38(10):1368–1375.
  • El-Sebaii AA, Aboul-Enein S, Ramadan MRI, et al. Investigation of thermal performance of-double pass-flat and v-corrugated plate solar air heaters. Energy. 2011;36(2):1076–1086.
  • Rostamani M, Hosseinizadeh SF, Gorji M, et al. Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties. Int Commun Heat Mass Transfer. 2010;37(10):1426–1431.
  • Bianco V, Manca O, Nardini S. Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube. Int J Therm Sci. 2011;50(3):341–349.
  • Fabbri G. Heat transfer optimization in corrugated wall channels. Int J Heat Mass Transfer. 2000;43(23):4299–4310.
  • Yin J, Yang G, Li Y. The effects of wavy plate phase shift on flow and heat transfer characteristics in corrugated channel. Energy Procedia. 2012;14:1566–1573.
  • Greig D, Siddiqui K, Karava P. An experimental investigation of the flow structure over a corrugated waveform in a transpired air collector. Int J Heat Fluid Flow. 2012;38:133–144.
  • Forooghi P, Hooman K. Effect of buoyancy on turbulent convection heat transfer in corrugated channels–a numerical study. Int J Heat Mass Transfer. 2013;64:850–862.
  • Ahmed M, Yusoff MZ, Shuaib N. Effects of geometrical parameters on the flow and heat transfer characteristics in trapezoidal-corrugated channel using nanofluid. Int Commun Heat Mass Transfer. 2013;42:69–74.
  • Mohammed H, Abed AM, Wahid M. The effects of geometrical parameters of a corrugated channel with in out-of-phase arrangement. Int Commun Heat Mass Transfer. 2013;40:47–57.
  • Khoshvaght-Aliabadi M. Influence of different design parameters and Al2O3-water nanofluid flow on heat transfer and flow characteristics of sinusoidal-corrugated channels. Energy Convers Manage. 2014;88:96–105.
  • Ahmed MA, Yusoff MZ, Ng KC, et al. Numerical and experimental investigations on the heat transfer enhancement in corrugated channels using SiO2–water nanofluid. Case Stud Therm Eng. 2015;6:77–92.
  • Handoyo EA, Ichsani D. Numerical studies on the effect of delta-shaped obstacles’ spacing on the heat transfer and pressure drop in v-corrugated channel of solar air heater. Sol Energy. 2016;131:47–60.
  • Rashidi S, Akbarzadeh M, Masoodi R, et al. Thermal-hydraulic and entropy generation analysis for turbulent flow inside a corrugated channel. Int J Heat Mass Transfer. 2017;109:812–823.
  • Feng Z, Luo X, Guo F, et al. Numerical investigation on laminar flow and heat transfer in rectangular microchannel heat sink with wire coil inserts. Appl Therm Eng. 2017;116:597–609.
  • Nguyen Q, Bahrami D, Kalbasi R, et al. Nanofluid flow through microchannel with a triangular corrugated wall: heat transfer enhancement against entropy generation intensification. Math Methods Appl Sci. 2020: 1–14.
  • Kanti PK, Sharma KV, Minea AA, et al. Experimental and computational determination of heat transfer, entropy generation and pressure drop under turbulent flow in a tube with fly ash-Cu hybrid nanofluid. Int J Therm Sci. 2021;167:107016.
  • Kanti P, Sharma K, Said Z, et al. Entropy generation and friction factor analysis of fly ash nanofluids flowing in a horizontal tube: experimental and numerical study. Int J Therm Sci. 2021;166:106972, doi:10.1016/j.ijthermalsci.2021.106972
  • Kanti P, Sharma KV, Said Z, et al. Numerical study on the thermo-hydraulic performance analysis of fly ash nanofluid. J Therm Anal Calorim. 2022;147:2101–2113. doi:10.1007/s10973-020-10533-0
  • Azadi M, Hosseinirad E, Hormozi F, et al. Second law analysis for nanofluid flow in mini-channel heat sink with finned surface: a study on fin geometries. J Therm Anal Calorim. 2020;140(4):1883–1895.
  • Babar H, Ali HM. Airfoil shaped pin-fin heat sink: potential evaluation of ferric oxide and titania nanofluids. Energy Convers Manage. 2019;202:112194.
  • Farhad SM, Noorzadeh S, Ataei M, et al. Experimental investigation of heat transfer and pressure drop in a minichannel heat sink using Al2O3 and TiO2–water nanofluids. J Braz Soc Mech Sci Eng. 2020;42(6):1–11.
  • Al-Mohsen SAA, Abed IM, Ali FH. A numerical comparison of circular and corrugation heat sink for laminar CuO–water nano-fluid flow and heat transfer enhancement. Appl Nanosci. 2023;13:2739–2766.
  • Liu J, Xie G, Simon TW. Turbulent flow and heat transfer enhancement in rectangular channels with novel cylindrical grooves. Int J Heat Mass Transfer. 2015;81:563–577.
  • Ionescu V, Neagu A-A. Numerical modelling of fluid flow and heat transfer in a corrugated channel for heat exchanger applications. Procedia Manuf. 2018;22:634–641.
  • Obalalu AM, Wahaab FA, Adebayo LL. Heat transfer in an unsteady vertical porous channel with injection/suction in the presence of heat generation. J Taibah Univ Sci. 2020;14(1):541–548. doi:10.1080/16583655.2020.1748844
  • Abd Elmaboud Y. Two-layered electroosmotic flow through a vertical microchannel with fractional Cattaneo heat flux. J Taibah Univ Sci. 2021;15(1):1038–1053. doi:10.1080/16583655.2021.2016162
  • Rashidi MM, Akolade MT, Awad MM, et al. Second law analysis of magnetized Casson nanofluid flow in squeezing geometry with porous medium and thermophysical influence. J Taibah Univ Sci. 2021;15(1):1013–1026. doi:10.1080/16583655.2021.2014691
  • Dagdevir T, Keklikcioglu O, Ozceyhan V. Thermo-hydraulic performance analyses of water based CuO-SiO2 hybrid nanofluid flow in a horizontal straight tube. Res Eng Struct Mat. 2018;4(2):91–102.
  • Kanti P, Sharma KV, Sekhar YR. Influence of particle size on thermal conductivity and dynamic viscosity of water-based Indian coal fly ash nanofluid. Heat Transfer. 2021;51(1):413–433. doi:10.1002/htj.22313
  • Nuhash MM, Alam MI, Zihad A, et al. Enhancing energy harvesting performance of a flat plate solar collector through integrated carbon-based and metal-based nanofluids. Results Eng. 2023;19:101276, ISSN 2590-1230, doi:10.1016/j.rineng.2023.101276
  • Ajeel RK, Salim WI, Sopian K, et al. Turbulent convective heat transfer of silica oxide nanofluid through corrugated channels: an experimental and numerical study. Int J Heat Mass Transfer. 2019;145:118806.
  • Ajeel RK, Salim W-I, Hasnan K. Thermal performance comparison of various corrugated channels using nanofluid: numerical study. Alexandria Eng J. 2019;58(1):75–87.
  • Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics: the finite volume method. Pearson education Limited; 2007.
  • Elbadawy I, Alali F, Derakhshandeh JF, et al. Effect of Al2O3, SiO2, and ZnO nanoparticle concentrations mixed with EG–water on the heat transfer characteristics through a microchannel. Processes. 2023;11(7):2015, doi:10.3390/pr11072015.
  • H B M, Kanti PK, Prakash SB, et al. Investigation of entropy generation and thermohydraulic characteristics of Al2O3–CuO hybrid nanofluid flow in a pipe at different inlet fluid temperatures. Int J Therm Sci. 2023;193:108541, doi:10.1016/j.ijthermalsci.2023.108541
  • Marulasiddeshi HB, Kanti PK, Jamei M, et al. Experimental study on the thermal properties of Al2O3-CuO/water hybrid nanofluids: Development of an artificial intelligence model. Int J Energy Res. 2022;46(15):21066–21083. doi:10.1002/er.8739
  • Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transfer. 2009;52(21-22):4675–4682.
  • Vajjha RS, Das DK, Kulkarni DP. Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. Int J Heat Mass Transfer. 2010;53(21-22):4607–4618.
  • Corcione M. Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls. Int J Therm Sci. 2010;49(9):1536–1546.
  • Naphon P. Heat transfer characteristics and pressure drop in channel with V corrugated upper and lower plates. Energy Convers Manage. 2007;48(5):1516–1524.