383
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An overview of the unique absorption and scattering characteristics of gold nanoparticles: experimental and theoretical study

, &
Article: 2309702 | Received 09 Jun 2022, Accepted 19 Jan 2024, Published online: 02 Feb 2024

References

  • Xiao T, Huang J, Wang D, et al. Au and Au-based nanomaterials: synthesis and recent progress in electrochemical sensor applications. Talanta. 2020;206:120210. doi:10.1016/j.talanta.2019.120210
  • Peña-Rodríguez O. Modelling the dielectric function of Au-Ag alloys. J Alloys Compd. 2017;694:857–863. doi:10.1016/j.jallcom.2016.10.086
  • Aldosari FMM. Characterization of labeled gold nanoparticles for surface-enhanced Raman scattering. Molecules. 2022;27(3):892. doi:10.3390/molecules27030892
  • Ghoshal SK, Sahar MR, Rohani MS, et al. Nanophotonics for 21st century. In: Optoelectronics-devices and applications. IntechOpen; 2011.
  • Falahati M, Attar F, Sharifi M, et al. Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine. Biochim Biophys Acta Gen Subj. 2020;1864(1):129435. doi:10.1016/j.bbagen.2019.129435
  • Taghizadeh S, Alimardani V, Roudbali PL, et al. Gold nanoparticles application in liver cancer. Photodiagn Photodyn Ther. 2019;25:389–400. doi:10.1016/j.pdpdt.2019.01.027
  • Ghoshal SK, Sahar MR, Dousti MR, et al. Model for up-conversion luminescence in silver nanoparticles embedded erbium-doped tellurite glass. Indian J Pure Appl Phys. 2012;50:555–565.
  • Rioux D, Vallières S, Besner S, et al. An analytic model for the dielectric function of Au, Ag, and their alloys. Adv Opt Mater. 2014;2(2):176–182. doi:10.1002/adom.201300457
  • Derkachova A, Kolwas K, Demchenko I. Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres. Plasmonics. 2016;11(3):941–951. doi:10.1007/s11468-015-0128-7
  • Jain PK, Lee KS, El-Sayed IH, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110(14):7238–7248. doi:10.1021/jp057170o
  • Bohren CF, Huffman DR. Absorption and scattering of light by small particles. Weinheim: John Wiley & Sons; 2008.
  • Méndez E, Fagundez P, Sosa P, et al. Experimental evidences support the existence of an aggregation/disaggregation step in the Turkevich synthesis of gold nanoparticles. Nanotechnology. 2020;32(4):045603. doi:10.1088/1361-6528/abbfd5
  • Ahmed S, Ikram S. Biosynthesis of gold nanoparticles: a green approach. J Photochem Photobiol B. 2016;161:141–153. doi:10.1016/j.jphotobiol.2016.04.034
  • Zhang J, Claverie J, Chaker M, et al. Colloidal metal nanoparticles prepared by laser ablation and their applications. ChemPhysChem. 2017;18(9):986–1006. doi:10.1002/cphc.201601220
  • Laban B, Ralević U, Petrović S, et al. Green synthesis and characterization of nontoxic L-methionine capped silver and gold nanoparticles. J Inorg Biochem. 2020;204:110958. doi:10.1016/j.jinorgbio.2019.110958
  • Alaqad K, Saleh TA. Gold and silver nanoparticles: synthesis methods, characterization routes and applications towards drugs. J Environ Anal Toxicol. 2016;6(4):525–2161. doi:10.4172/2161-0525.1000384
  • Lee SH, Jung HJ, Lee SJ, et al. Selective synthesis of Au and graphitic carbon-encapsulated Au (Au@ GC) nanoparticles by pulsed laser ablation in solvents: catalytic Au and acid resistant Au@ GC nanoparticles. Appl Surf Sci. 2020;506:145006. doi:10.1016/j.apsusc.2019.145006
  • Amendola V, Meneghetti M. Size evaluation of gold nanoparticles by UV−vis spectroscopy. J Phys Chem C. 2009;113(11):4277–4285. doi:10.1021/jp8082425
  • Shabaninezhad M, Ramakrishna G. Theoretical investigation of size, shape, and aspect ratio effect on the LSPR sensitivity of hollow-gold nanoshells. J Chem Phys. 2019;150(14):144116. doi:10.1063/1.5090885
  • Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B. 1972;6(12):4370. doi:10.1103/PhysRevB.6.4370
  • Alluhaybi HA, Ghoshal SK, Alsobhi BO, et al. Electronic and optical correlation effects in bulk gold: role of spin–orbit coupling. Comput Condens Matter. 2019;18:e00360. doi:10.1016/j.cocom.2018.e00360
  • Kreibig U, Vollmer M. Optical properties of metal clusters. Vol. 25. Heidelberg: Springer; 2013.
  • Amendola V, Pilot R, Frasconi M, et al. Surface plasmon resonance in gold nanoparticles: a review. J Phys: Condens Matter. 2017;29(20):203002. doi:10.1088/1361-648X/aa60f3
  • Mätzler C. MATLAB functions for Mie scattering and absorption, version 2. IAP Res Rep. 2002;8(1):9.
  • Olson J, Dominguez-Medina S, Hoggard A, et al. Optical characterization of single plasmonic nanoparticles. Chem Soc Rev. 2015;44(1):40–57. doi:10.1039/C4CS00131A
  • Qian X, Park HS. The influence of mechanical strain on the optical properties of spherical gold nanoparticles. J Mech Phys Solids. 2010;58(3):330–345. doi:10.1016/j.jmps.2009.12.001
  • Grady NK, Halas NJ, Nordlander P. Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles. Chem Phys Lett. 2004;399(1-3):167–171. doi:10.1016/j.cplett.2004.09.154
  • Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods; 1999.
  • Link S, El-Sayed MA. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem. 2000;19(3):409–453. doi:10.1080/01442350050034180
  • Affandi MS, Bidin N, Abdullah M, et al. In situ measurement of gold nanoparticle production. J Nanophotonics. 2015;9(1):093089. doi:10.1117/1.JNP.9.093089
  • Al-Azawi MA, Bidin N. Gold nanoparticles synthesized by laser ablation in deionized water. Chin J Phys. 2015;53(4):201–209.
  • Amendola V, Meneghetti M. What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys Chem Chem Phys. 2013;15(9):3027–3046. doi:10.1039/C2CP42895D