359
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Continuous flow laser-induced unzipping of multiwalled carbon nanotubes

ORCID Icon
Article: 2310885 | Received 23 Jan 2023, Accepted 23 Jan 2024, Published online: 09 Feb 2024

References

  • Georgakilas V, Perman JA, Tucek J, et al. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev. 2015;115:4744–4822. doi:10.1021/cr500304f
  • Hong G, Diao S, Antaris AL, et al. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev. 2015;115:10816–10906. doi:10.1021/acs.chemrev.5b00008
  • Kosynkin DV, Higginbotham AL, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature. 2009;458:872–876. doi:10.1038/nature07872
  • Bati AS, Yu L, Batmunkh M, et al. Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. Nanoscale. 2018;10:22087–22139. doi:10.1039/C8NR07379A
  • Bati AS, Yu L, Batmunkh M, et al. Recent advances in applications of sorted single-walled carbon nanotubes. Adv Funct Mater. 2019;29:1902273. doi:10.1002/adfm.201902273
  • Kumar R, Singh RK, Singh DP, et al. Laser-assisted synthesis, reduction and micro-patterning of graphene: recent progress and applications. Coordination Chem Rev. 2017;342:34–79. doi:10.1016/j.ccr.2017.03.021
  • Kumar R, delPino AP, Sahoo S, et al. Laser processing of graphene and related materials for energy storage: state of the art and future prospects. Prog Energy Combust Sci. 2022;91:100981. doi:10.1016/j.pecs.2021.100981
  • Luo S, Chen X, He Y, et al. Recent advances on graphene nanoribbons for biosensing and biomedicine. J Mater Chem B. 2021;9:6129–6143. doi:10.1039/D1TB00871D
  • Xu W, Lee T-W. Recent progress in fabrication techniques of graphene nanoribbons. Mater Horiz. 2016;3:186–207. doi:10.1039/C5MH00288E
  • Terrones M. Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons. ACS Nano. 2010;4:1775–1781. doi:10.1021/nn1006607
  • Kumar R, Joanni E, Savu R, et al. Fabrication and electrochemical evaluation of micro-supercapacitors prepared by direct laser writing on free-standing graphite oxide paper. Energy. 2019;179:676–684. doi:10.1016/j.energy.2019.05.032
  • Kumar R, Joanni E, Singh RK, et al. Direct laser writing of micro-supercapacitors on thick graphite oxide films and their electrochemical properties in different liquid inorganic electrolytes. J Colloid Interface Sci. 2017;507:271–278. doi:10.1016/j.jcis.2017.08.005
  • Lee KW, Lee CE. Electric field-induced unzipping of hydrogenated carbon nanotubes into graphene nanoribbons. Curr Appl Phys. 2014;14:337–339. doi:10.1016/j.cap.2013.12.015
  • Sinitskii A, Fursina AA, Kosynkin DV, et al. Electronic transport in monolayer graphene nanoribbons produced by chemical unzipping of carbon nanotubes. Appl Phys Lett. 2009;95:253108. doi:10.1063/1.3276912
  • Abbas AN, Liu G, Liu B, et al. Patterning, characterization, and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography. ACS Nano. 2014;8:1538–1546. doi:10.1021/nn405759v
  • Lee HJ, Lim J, Cho S-Y, et al. Intact crystalline semiconducting graphene nanoribbons from unzipping nitrogen-doped carbon nanotubes. ACS Appl Mater Interfaces. 2019;11:38006–38015. doi:10.1021/acsami.9b08876
  • Zheng Q-F, Guo Y, Liang Y, et al. Graphene nanoribbons from electrostatic-force-controlled electric unzipping of single-and multi-walled carbon nanotubes. ACS Appl Nano Mater. 2020;3:4708–4716. doi:10.1021/acsanm.0c00710
  • ZehtabYazdi A, Chizari K, Jalilov AS, et al. Helical and dendritic unzipping of carbon nanotubes: a route to nitrogen-doped graphene nanoribbons. ACS Nano. 2015;9:5833–5845. doi:10.1021/acsnano.5b02197
  • Xu X, Ruan S, Zhai J, et al. Facile synthesis of graphene nanoribbons from zeolite-templated ultra-small carbon nanotubes for lithium ion storage. J Mater Chem A. 2018;6:21327–21334. doi:10.1039/C8TA07501H
  • Kim K, Sussman A, Zettl A. Graphene nanoribbons obtained by electrically unwrapping carbon nanotubes. ACS Nano. 2010;4:1362–1366. doi:10.1021/nn901782g
  • Vadahanambi S, Jung J-H, Kumar R, et al. An ionic liquid-assisted method for splitting carbon nanotubes to produce graphene nano-ribbons by microwave radiation. Carbon. 2013;53:391–398. doi:10.1016/j.carbon.2012.11.029
  • Joanni E, Kumar R, Fernandes WP, et al. In situ growth of laser-induced graphene micro-patterns on arbitrary substrates. Nanoscale. 2022;14:8914–8918. doi:10.1039/D2NR01948E
  • Silva-Santos S, Alencar R, Aguiar A, et al. From high pressure radial collapse to graphene ribbon formation in triple-wall carbon nanotubes. Carbon. 2019;141:568–579. doi:10.1016/j.carbon.2018.09.076
  • Kumar P, Yamijala SS, Pati SK. Optical unzipping of carbon nanotubes in liquid Media. J Phys Chem. C. 2016;120:16985–16993. doi:10.1021/acs.jpcc.6b02524
  • Choi BG, Yang M, Hong WH, et al. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano. 2012;6:4020–4028. doi:10.1021/nn3003345
  • Silva AA, Pinheiro RA, Rodrigues AC, et al. Graphene sheets produced by carbon nanotubes unzipping and their performance as supercapacitor. Appl Surf Sci. 2018;446:201–208. doi:10.1016/j.apsusc.2018.01.214
  • Ko D, Choi J, Yan B, et al. A facile and scalable approach to develop electrochemical unzipping of multi-walled carbon nanotubes to graphene nanoribbons. J. Mater. Chem. A. 2020;8:22045–22053. doi:10.1039/D0TA03782F
  • Kumar P, Panchakarla L, Rao C. Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons. Nanoscale. 2011;3:2127–2129. doi:10.1039/c1nr10137d
  • Bang SY, Ryu JH, Choi BG, et al. A simple route for fabrication of graphene nanoribbons by pulsed laser irradiation in ethanol. J. Alloys Compd. 2014;618:33–36. doi:10.1016/j.jallcom.2014.08.004
  • Hamidinejad M, Zhao B, Zandieh A, et al. Enhanced electrical and electromagnetic interference shielding properties of polymer–graphene nanoplatelet composites fabricated via supercritical-fluid treatment and physical foaming. ACS Appl Mater Interfaces. 2018;10:30752–30761. doi:10.1021/acsami.8b10745
  • Arjmand M, Sadeghi S, OteroNavas I, et al. Carbon nanotube versus graphene nanoribbon: impact of nanofiller geometry on electromagnetic interference shielding of polyvinylidene fluoride nanocomposites. Polymers. 2019;11:1064. doi:10.3390/polym11061064
  • Jun Y-s, Habibpour S, Hamidinejad M, et al. Enhanced electrical and mechanical properties of graphene nano-ribbon/thermoplastic polyurethane composites. Carbon. 2021;174:305–316. doi:10.1016/j.carbon.2020.12.023
  • Lin G, Zhou T, Zhou Z, et al. Laser induced graphene for EMI shielding and ballistic impact damage detection in basalt fiber reinforced composites. Compos Sci Technol. 2023;242:110182.
  • Alharbi TM, Alotaibi AE, Chen D, et al. Unzipping multiwalled carbon nanotubes under vortex fluidic continuous flow. ACS Appl Nano Mater. 2022;5:12165–12173. doi:10.1021/acsanm.2c02448
  • Luo X, Al-Antaki AHM, Vimalanathan K, et al. Laser irradiated vortex fluidic mediated synthesis of luminescent carbon nanodots under continuous flow. React Chem Eng. 2018;3:164–170. doi:10.1039/C7RE00197E
  • Alharbi T, Jellicoe M, Luo X, et al. Sub-micron moulding topological mass transport regimes in angled vortex fluidic flow. Nanoscale Adv. 2021;3:3064–3075. doi:10.1039/D1NA00195G
  • Vimalanathan K, Raston CL. Dynamic thin films in controlling the fabrication of nanocarbon and its composites. Adv Mater Technol. 2017;2:1600298. doi:10.1002/admt.201600298
  • Britton J, Stubbs KA, Weiss GA, et al. Vortex fluidic chemical transformations. Chem Eur J. 2017;23:13270–13278. doi:10.1002/chem.201700888
  • Alharbi TM, Li Q, Raston CL. Thin film mechano-energy induced slicing of carbon nanotubes under flow. ACS Sustain Chem Eng. 2021;9:16044–16051. doi:10.1021/acssuschemeng.1c03109
  • Alharbi TM, Vimalanathan K, Lawrance WD, et al. Controlled slicing of single walled carbon nanotubes under continuous flow. Carbon. 2018;140:328–434. doi:10.1016/j.carbon.2018.08.066
  • Batmunkh M, Vimalanathan K, Wu C, et al. Efficient production of phosphorene nanosheets via shear stress mediated exfoliation for low-temperature perovskite solar cells. Small Methods. 2019;3:1800521. doi:10.1002/smtd.201800521
  • Vimalanathan K, Suarez-Martinez I, Peiris C, et al. Vortex fluidic mediated transformation of graphite into highly conducting graphene scrolls. Nanoscale Adv. 2019;1:2495–2501. doi:10.1039/C9NA00184K
  • Al-Antaki AHM, Luo X, Alharbi TM, et al. Inverted vortex fluidic exfoliation and scrolling of hexagonal-boron nitride. RSC Adv. 2019;9:22074–22079. doi:10.1039/C9RA03970H
  • Alharbi TM, Shingaya Y, Vimalanathan K, et al. High yielding fabrication of magnetically responsive coiled single walled carbon nanotube under flow. ACS Appl Nano Mater. 2019;2:5282–5289. doi:10.1021/acsanm.9b01135
  • Alsulam IK, Alharbi TM, Moussa M, et al. High-yield continuous-flow synthesis of spheroidal C60@ graphene composites as supercapacitors. ACS Omega. 2019;4:19279–19286. doi:10.1021/acsomega.9b02656
  • Yasmin L, Chen X, Stubbs KA, et al. Optimising a vortex fluidic device for controlling chemical reactivity and selectivity. Sci Rep. 2013;3:2282. doi:10.1038/srep02282
  • Lin S, Chen X, Wang ZL. Contact electrification at the liquid–solid interface. Chem Rev. 2022;112:5209–5232. doi:10.1021/acs.chemrev.1c00176
  • Kaponig M, Mölleken A, Nienhaus H, et al. Dynamics of contact electrification. Sci Adv. 2021;7:595. doi:10.1126/sciadv.abg7595
  • Vimalanathan K, Gascooke JR, Suarez-Martinez I, et al. Fluid dynamic lateral slicing of high tensile strength carbon nanotubes. Sci Rep. 2016;6:22865. doi:10.1038/srep22865
  • Alharbi TM, Harvey D, Alsulami IK, et al. Shear stress mediated scrolling of graphene oxide. Carbon. 2018;137:419–424. doi:10.1016/j.carbon.2018.05.040
  • Alharbi T, Vimalanathan K, Alsulami I, et al. Vertically aligned laser sliced MWCNTs. Nanoscale. 2019;11:21394–21403.
  • Jellicoe M, Gibson CT, Quinton JS, et al. Coiling of single-walled carbon nanotubes via selective topological fluid flow: implications for sensors. ACS Appl Nano Mater. 2022;5:11586–11594. doi:10.1021/acsanm.2c02579
  • Xiao B, Li X, Li X, et al. Graphene nanoribbons derived from the unzipping of carbon nanotubes: controlled synthesis and superior lithium storage performance. J Phys Chem C. 2014;118:881–890. doi:10.1021/jp410812v
  • Dimiev AM, Khannanov A, Vakhitov I, et al. Revisiting the mechanism of oxidative unzipping of multiwall carbon nanotubes to graphene nanoribbons. ACS Nano. 2018;12:3985–3993. doi:10.1021/acsnano.8b01617
  • Yang M, Hu L, Tang X, et al. Longitudinal splitting versus sequential unzipping of thick-walled carbon nanotubes: towards controllable synthesis of high-quality graphitic nanoribbons. Carbon. 2016;110:480–489. doi:10.1016/j.carbon.2016.09.055
  • Wang C, Li Y-S, Jiang J, et al. Controllable tailoring graphene nanoribbons with tunable surface functionalities: an effective strategy toward high-performance lithium-ion batteries. ACS Appl Mater interfaces. 2015;7:17441–17449. doi:10.1021/acsami.5b04864
  • Liu M, Song Y, He S, et al. Nitrogen-doped graphene nanoribbons as efficient metal-free electrocatalysts for oxygen reduction. ACS Appl Mater Interfaces. 2014;6:4214–4222. doi:10.1021/am405900r
  • Sivakumar A, JudeDhas SS, Pazhanivel T, et al. Phase transformation of amorphous to crystalline of multiwall carbon nanotubes by shock waves. Cryst Growth Des. 2021;21:1617–1624. doi:10.1021/acs.cgd.0c01464
  • Romero Aburto R, Alemany LB, Weldeghiorghis TK, et al. Chemical makeup and hydrophilic behavior of graphene oxide nanoribbons after low-temperature fluorination. ACS Nano. 2015;9:7009–7018. doi:10.1021/acsnano.5b01330
  • Li J, Ye S, Li T, et al. Preparation of graphene nanoribbons (GNRs) as an electronic component with the multi-walled carbon nanotubes (MWCNTs). Procedia Eng. 2015;102:492–498. doi:10.1016/j.proeng.2015.01.197
  • Medina P, Zheng H, Fahlman B, et al. Li4Ti5O12/graphene nanoribbons composite as anodes for lithium ion batteries. SpringerPlus. 2015;4:1–7. doi:10.1186/s40064-015-1438-0
  • He X, Xu X, Bo G, et al. Studies on the effects of different multiwalled carbon nanotube functionalization techniques on the properties of bio-based hybrid non-isocyanate polyurethane. RSC Adv. 2020;10:2180–2190. doi:10.1039/C9RA08695A
  • Estrade-Szwarckopf H. XPS photoemission in carbonaceous materials: A “defect” peak beside the graphitic asymmetric peak. Carbon. 2004;42:1713–1721. doi:10.1016/j.carbon.2004.03.005
  • Shu Q, Xia Z, Wei W, et al. Controllable unzipping of carbon nanotubes as advanced Pt catalyst supports for oxygen reduction. ACS Appl Energy Mater. 2019;2:5446–5455. doi:10.1021/acsaem.9b00506