492
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Efficient electrocatalytic oxygen evolution by nano NiO-In2O3 electrode materials

, , , , & ORCID Icon
Article: 2312597 | Received 10 Jul 2023, Accepted 26 Jan 2024, Published online: 06 Feb 2024

References

  • Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37–38.
  • Maeda K, Domen K. Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett. 2010;1(18):2655–2661.
  • Osterloh FE, Parkinson BA. Recent developments in solar water-splitting photocatalysis. MRS Bull. 2011;36(01):17–22.
  • Iqbal N, Khan I, Yamani ZH, et al. Sonochemical assisted solvothermal synthesis of gallium oxynitride nanosheets and their solar-driven photoelectrochemical water-splitting applications. Sci Rep. 2016;6:32319.
  • Iqbal N, Khan MS, Zubair M, et al. Advanced photoelectrochemical hydrogen generation by CdO-g-C3N4 in aqueous medium under visible light. Molecules. 2022;27(24):8646.
  • Greeley J, Jaramillo TF, Bonde J, et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater. 2006;5(11):909–913.
  • Xu Y-Z, Yuan C-Z, Chen X-P. One-pot synthesis nickel sulfide/amorphous molybdenum sulfide nanosheets array on nickel foam as a robust oxygen evolution reaction electrocatalyst. J Solid State Chem. 2017;256:124–129.
  • Toma FM, Sartorel A, Iurlo M, et al. Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nat Chem. 2010;2(10):826–831.
  • Zhang C, Antonietti M, Fellinger T-P. Blood ties: Co3O4 Decorated blood derived carbon as a superior bifunctional electrocatalyst. Adv Funct Mater. 2014;24(48):7655–7665.
  • Ehsan MA, Hakeem AS, Rehman A. Hierarchical growth of CoO nanoflower thin films influencing the electrocatalytic oxygen evolution reaction. Electrocatalysis. 2020;11(3):282–291.
  • Li C, Baek J-B. Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega. 2020;5(1):31–40.
  • Ehsan MA, Rehman A, Afzal A, et al. Highly effective electrochemical water oxidation by millerite-phased nickel sulfide nanoflakes fabricated on Ni foam by aerosol-assisted chemical vapor deposition. Energy Fuels. 2021;35(19):16054–16064.
  • Rehman A, Ehsan MA, Afzal A, et al. Aerosol-assisted nanostructuring of nickel/cobalt oxide thin films for viable electrochemical hydrazine sensing. Analyst. 2021;146(10):3317–3327.
  • Elmacı G, Ertürk AS, Sevim M, et al. MnO2 nanowires anchored on mesoporous graphitic carbon nitride (MnO2@ mpg-C3N4) as a highly efficient electrocatalyst for the oxygen evolution reaction. Int J Hydrogen Energy. 2019;44(33):17995–18006.
  • Yin L, Ding X, Wei W, et al. Improving catalysis for electrochemical water splitting using a phosphosulphide surface. Inorg Chem Front. 2020;7(12):2388–2395.
  • Suryanto BHR, Wang Y, Hocking RK, et al. Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. Nat Commun. 2019;10(1):5599.
  • Elmaci G. Microwave assisted green synthesis of Ag/AgO nanocatalyst as an efficient OER catalyst in neutral media. Hittite J Sci Eng. 2020;7(1):61–65.
  • Ma X, Zhang W, Deng Y, et al. Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting. Nanoscale. 2018;10(10):4816–4824.
  • Chauhan M, Deka S. Hollow cobalt sulfide nanoparticles: a robust and Low-cost pH-universal oxygen evolution electrocatalyst. ACS Appl Energy Mate. 2020;3(1):977–986.
  • Swathi S, Yuvakkumar R, Ravi G, et al. Silver-doped cadmium sulfide for electrochemical water oxidation. Appl Nanosci. 2020;10(11):4351–4358.
  • Elmacı G, Özgenç G, Kurz P, et al. Enhanced water oxidation performances of birnessite and magnetic birnessite nanocomposites by transition metal ion doping. Sustainable Energy Fuels. 2020;4(6):3157–3166.
  • Elmaci G, Icten O, Ozer D, et al. Manganese oxoborate-based nanostructures as novel oxygen evolution catalysts in neutral media. Chem Nano Mat. 2021;7(12):1340–1347.
  • Icten O, Ozer D, Elmaci G. Boron doped cryptomelane as a highly efficient electrocatalyst for the oxygen evolution reaction. Int J Hydrogen Energy. 2021;46(80):39810–39821.
  • Zheng X, Han X, Zhang Y, et al. Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting. Nanoscale. 2019;11(12):5646–5654.
  • Tiwari AP, Yoon Y, Novak TG, et al. Continuous network of phase-tuned nickel sulfide nanostructures for electrocatalytic water splitting. ACS Appl Nano Mater. 2019;2(8):5061–5070.
  • Huang R, Chen W, Zhang Y, et al. Well-designed cobalt-nickel sulfide microspheres with unique peapod-like structure for overall water splitting. J Colloid Interface Sci. 2019;556:401–410.
  • Jin S, Zhu Y, He Z, et al. Revealing the effects of oxygen defects on the electrocatalytic activity of nickel oxide. Int J Hydrogen Energy. 2020;45(1):424–432.
  • Gong M, Zhou W, Tsai MC, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat commun. 2014;5(1):1–6.
  • Ibrahim AA, Khan I, Iqbal N, et al. Facile synthesis of tungsten oxide – Bismuth vanadate nanoflakes as photoanode material for solar water splitting. Int J Hydrogen Energy. 2017;42(5):3423–3430.
  • Wrede S, Tian H. Towards sustainable and efficient p-type metal oxide semiconductor materials in dye-sensitised photocathodes for solar energy conversion. Phys Chem Chem Phys. 2020;22(25):13850–13861.
  • Zhang M, Lin Y, Mullen TJ, et al. Improving hematite’s solar water splitting efficiency by incorporating rare-earth upconversion nanomaterials. J Phys Chem Lett. 2012;3(21):3188–3192.
  • Ehsan MA, Naeem R, Rehman A, et al. Facile fabrication of CeO2–TiO2 thin films via solution based CVD and their photoelectrochemical studies. J Mater Sci: Mater Electron. 2018;29(15):13209–13219.
  • Rehman A, Ehsan MA, Afzal A, et al. Aerosol-assisted nanostructuring of nickel/cobalt oxide thin films for viable electrochemical hydrazine sensing. Analyst. 2021;146(10):3317–3327.
  • Komarneni S. Nanophase materials by hydrothermal, microwave-hydrothermal and microwave-solvothermal methods. Curr Sci. 2003;85(12):1730–1734.
  • Dem’yanets LN, Lyutin VI. Status of hydrothermal growth of bulk ZnO: latest issues and advantages. J Cryst Growth. 2008;310(5):993–999.
  • Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1(1):011002.
  • Belsky A, Hellenbrandt M, Karen VL, et al. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr, Sect B: Struct Sci. 2002;58(3-1):364–369.
  • El-Kemary M, Nagy N, El-Mehasseb I. Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater Sci Semicond Process. 2013;16(6):1747–1752.
  • Nistor M, Seiler W, Hebert C, et al. Effects of substrate and ambient gas on epitaxial growth indium oxide thin films. Appl Surf Sci. 2014;307:455–460.
  • Ma X, Zhu H, Yu L, et al. Rare earth doped indium oxide nanospheres based gas sensor for highly sensitive formaldehyde detection at low temperature. Nanoscale. 2023;15(4):1609–1618.
  • Li J, Yan R, Xiao B, et al. Preparation of nano-NiO particles and evaluation of their catalytic activity in pyrolyzing biomass components. Energy Fuels. 2008;22(1):16–23.
  • Alanazi HS, Alotaibi H, AL-Shehri HS, et al. Structural, morphological and optical behavior of green synthesized NiO nanoparticle for methylene blue photo-degradation. J Nanoelectron Optoelectron. 2021;16(10):1684–1689.
  • Sharma AK, Desnavi S, Dixit C, et al. Extraction of nickel nanoparticles from electroplating waste and their application in production of bio-diesel from biowaste. Int J Chem Eng Appl. 2015;6(3):156.
  • Chandradass J, Han KS, Bae DS. Synthesis and characterization of zirconia-and silica-doped zirconia nanopowders by oxalate processing. J Mater Process Technol. 2008;206(1-3):315–321.
  • Kulkarni SC, Patil DS. Synthesis and characterization of uniform spherical shape nanoparticles of indium oxide. J Mater Sci: Mater Electron. 2016;27:3731–3735.
  • Singh VN, Mehta BR. A two-step synthesis procedure for In2O3 nanoparticle films having well-defined particle size. Jpn J Appl Phys. 2003;42(7R):4226.
  • Poznyak SK, Golubev AN, Kulak AI. Correlation between surface properties and photocatalytic and photoelectrochemical activity of In2O3 nanocrystalline films and powders. Surf Sci. 2000;454:396–401.
  • Robinson JW. Practical handbook of spectroscopy. Boca Raton, FL: CRC press; 1991.
  • Mondal A, Ram S. Reconstructive phase formation of ZrO2 nanoparticles in a new orthorhombic crystal structure from an energized porous ZrO (OH) 2· xH2O precursor. Ceram Int. 2004;30(2):239–249.
  • Habib A, Khan MS, Zubair M, et al. Ni-Doped In2O3 nanoparticles and their composite with rGO for efficient degradation of organic pollutants in wastewater under visible light irradiation. Int J Mol Sci. 2023;24(9):7950.
  • Iqbal N, Afzal A, Khan I, et al. Molybdenum impregnated g-C3N4 nanotubes as potentially active photocatalyst for renewable energy applications. Sci Rep. 2021;11(1):16886.
  • Shinagawa T, Garcia-Esparza AT, Takanabe K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep. 2015;5(1):13801.
  • Ehsan MA, Ullah Z, Nazar MF, et al. One step fabrication of nanostructured nickel thin films on porous nickel foam for drastic electrocatalytic oxygen evolution. Int J Hydrogen Energy. 2023.
  • Chang BY, Park SM. Electrochemical impedance spectroscopy. Annu Rev Anal Chem. 2010;3(1):207.
  • McCrory CCL, Jung S, Peters JC, et al. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 2013;135(45):16977–16987.
  • Ehsan MA, Babar N-U-A. Straightforward preparation of Fe-based electrocatalytic films at various substrates for IrO2-like water oxidation activity. Energy Fuels. 2023.
  • Costentin C, Drouet S, Robert M, et al. Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. cyclic voltammetry and preparative-scale electrolysis. J Am Chem Soc 2012;134(27):11235–11242.
  • Babar N-U-A, Khan A, Hakeem AS, et al. NiPd nano-alloy film as a promising low overpotential electrocatalyst for high activity water oxidation reaction. J Environ Chem Eng. 2022;10(3):107959.