266
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Monte Carlo study on nanogold dose enhancement for breast radiotherapy using an ICRP female computational phantom

ORCID Icon &
Article: 2319367 | Received 08 Sep 2023, Accepted 10 Feb 2024, Published online: 19 Feb 2024

References

  • Breast cancer. World Health Organization; [cited 2023 Jul 31]. Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer#::text=In%202020%2C%20there%20were%2023,the%20worlds%20most%20prevalent%20cancer.
  • Bryant AK, Banegas MP, Martinez ME, et al. Trends in radiation therapy among cancer survivors in the United States, 2000–2030. Cancer Epidemiol Biomarkers Prev. 2017;26(6):963–970. doi: 10.1158/1055-9965.epi-16-1023
  • Wang W. Radiotherapy in the management of early breast cancer. J Med Radiat Sci. 2013;60(1):40–46. doi: 10.1002/jmrs.1
  • Treatment of breast cancer stages I–III — American Cancer Society [Internet]; [cited 2023 Jul 31]. Available from: https://www.cancer.org/cancer/types/breast-cancer/treatment/treatment-of-breast-cancer-by-stage/treatment-of-breast-cancer-stages-i-iii.html.
  • Washington CM, Leaver DT. Principles and practice of radiation therapy-e-book. New York: Elsevier Health Sciences; 2015.
  • Karpf D, Sakka M, Metzger M, et al. Left breast irradiation with tangential intensity modulated radiotherapy (t-IMRT) versus tangential volumetric modulated arc therapy (t-VMAT): trade-offs between secondary cancer induction risk and optimal target coverage. Radiat Oncol. 2019;14(1). doi: 10.1186/s13014-019-1363-4
  • Hinkelbein W, Bruggmoser G, Frommhold H, et al. Acute and long-term side-effects of radiotherapy: biological basis and clinical relevance. Vol. 130. Berlin, Heidelberg: Springer Science & Business Media; 2012.
  • Lee J, Chatterjee DK, Lee MH, et al. Gold nanoparticles in breast cancer treatment: promise and potential pitfalls. Cancer Lett. 2014;347(1):46–53. doi: 10.1016/j.canlet.2014.02.006
  • Sarria GR, Berenguer Francés MÁ, Linares Galiana I. Enhancing radiotherapy effect in breast cancer with nanoparticles: a review. Rep Practical Oncol Radiotherapy. 2019;24(1):65–67. doi: 10.1016/j.rpor.2018.10.003
  • Kwatra D, Venugopal A, Anant S. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res. 2013;2(4):330–342. doi: 10.3978/j.issn.2218-676X.2013.08.06.
  • Song G, Cheng L, Chao Y, et al. Emerging nanotechnology and advanced materials for cancer radiation therapy. Adv Mater. 2017;29(32):1700996. doi: 10.1002/adma.201700996
  • Chen Q, Chen J, Yang Z, et al. Nanoparticle-enhancedradiotherapy to trigger robust cancer immunotherapy. Adv Mater. 2019;31(10):1802228. doi: 10.1002/adma.-201802228
  • Pallares RM, Abergel RJ. Nanoparticles for targeted cancer radiotherapy. Nano Res. 2020;13(11):2887–2897. doi: 10.1007/s12274-020-2957-8
  • Shahbazi–Gahrouei D, Choghazardi Y, Kazemzadeh A, et al. A review of bismuth-based nanoparticles and their applications in radiosensitising and dose enhancement for cancer radiation therapy. IET Nanobiotechnol. 2023;17(4):302–311. doi: 10.1049/nbt2.v17.4
  • Her S, Jaffray DA, Allen C. Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev. 2017;109:84–101. doi: 10.1016/j.addr.2015.12.012
  • Liu PD, Jin H, Guo Z, et al. Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma. Int J Nanomed. 2016;11:5003–5014. doi: 10.2147/ijn.s11-5473
  • Liu Y, Zhang P, Li F, et al. Metal-based nanoenhancers for future radiotherapy: radiosensitizing and synergisticeffects on tumor cells. Theranostics. 2018;8(7):1824–1849. doi: 10.7150/thno.22172
  • Schuemann J, Berbeco R, Chithrani DB, et al. Roadmap to clinical use of gold nanoparticles for radiation sensitization. Int J Radiat Oncol Biol Phys. 2016;94(1):189–205. doi: 10.1016/j.ijrobp.2015.09.032
  • Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. 2004;49(18):N309–N315. doi: 10.1088/0031-9155/49/18/N03
  • Hainfeld JF, Dilmanian FA, Zhong Z, et al. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol. 2010;55(11):3045–3059. doi: 10.1088/0031-9155/55/11/004
  • Hwang C, Kim JM, Kim J. Influence of concentration, nanoparticle size, beam energy, and material on dose enhancement in radiation therapy. J Radiat Res. 2017;58(4):405–411. doi: 10.1093/jrr/rrx009
  • Sheeraz Z, Chow JCL. Evaluation of dose enhancement with gold nanoparticles in kilovoltage radiotherapy using the new EGS geometry library in Monte Carlo simulation. AIMS Biophys. 2021;8(4):337–345. doi: 10.3934/biophy.2021027
  • Martelli S, Chow JCL. Dose enhancement for the flattening-filter-free and flattening-filter photon beams innanoparticle-enhanced radiotherapy: a Monte Carlophantom study. Nanomaterials. 2020;10(4):637. doi: 10.3390/nano10040637
  • Chow JCL. Depth dose enhancement on flattening-filter-free photon beam: a Monte Carlo study in nanoparticle-enhanced radiotherapy. Appl Sci. 2020;10(20):7052. doi: 10.3390/app10207052
  • Spina A, Chow JCL. Dosimetric impact on the flattening filter and addition of gold nanoparticles in radiotherapy: a Monte Carlo study on depth dose using the 6 and 10 MV FFF photon beams. Materials. 2022;15(20):7194. doi: 10.3390/ma15207194
  • Vlastou E, Diamantopoulos S, Efstathopoulos EP. Monte Carlo studies in gold nanoparticles enhanced radiotherapy: the impact of modelled parameters in dose enhancement. Phys Med. 2020;80:57–64. doi: 10.1016/j.ejmp.2020.09.022
  • Lin Y, McMahon SJ, Scarpelli M, et al. Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation. Phys Med Biol. 2014;59(24):7675–7689. doi: 10.1088/0031-9155/59/24/7675
  • Zheng Q, Yang H, Wei J, et al. The role and mechanisms of nanoparticles to enhance radiosensitivity in hepatocellular cell. Biomed Pharmacother. 2013;67(7):569–575. doi: 10.1016/j.biopha.2013.04.003
  • Butterworth KT, McMahon SJ, Currell FJ, et al. Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale. 2012;4(16):4830. doi: 10.1039/-c2nr31227a
  • Jain S, Coulter JA, Hounsell AR, et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys. 2011;79(2):531–539. doi: 10.1016/j.ijrobp.2010.08.044
  • Tsiamas P, Liu B, Cifter F, et al. Impact of beam quality on megavoltage radiotherapy treatment techniques utilizing gold nanoparticles for dose enhancement. Phys Med Biol. 2013;58(3):451–464. doi: 10.1088/0031-9155/58/3/451
  • Berbeco RI, Detappe A, Tsiamas P, et al. Low Z target switching to increase tumor endothelial cell dose enhancement during gold nanoparticle-aided radiation therapy. Med Phys. 2015;43(1):436–442. doi: 10.1118/1.4938410
  • Rogers DWO, Walters B, Kawrakow I. BEAMnrc users manual; 2009. (NRC Rep., PIRS, 509).
  • Al-Saleh WM, Hugtenburg RP. Monte Carlo modelling of a 6 MV Elekta linear accelerator for in-field and out-of-field dosimetry. Radiat Phys Chem. 2023;203: 110584. doi: 10.1016/j.radphyschem.2-022.110584
  • Almatani T. Optimisation of variance reduction techniques in EGSnrc Monte Carlo for a 6 MV photon beam of an Elekta synergy linear accelerator. J King Saud Univ Sci. 2021;33(4):101421. doi: 10.1016/j.jksus.2021.101421
  • Ma CM, Rogers DWO. BEAMDP as a general-purpose utility; 2004. (NRC Rep., PIRS, 509e (rev A)).
  • ICRP. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP 39; 2009.
  • Walters B, Kawrakow I, Rogers D. DOSXYZnrc users manual; 2013. (NRC Rep., PIRS, 794).
  • Vassiliev ON, Titt U, Pönisch F, et al. Dosimetric properties of photon beams from a flattening filter free clinical accelerator. Phys Med Biol. 2006;51(7):1907–1917. doi: 10.1088/0031-9155/51/7/019
  • Chow JCL, Owrangi AM. Mucosal dosimetry on unflattened photon beams: a Monte Carlo phantom study. Biomed Phys Eng Express. 2018;5(1):015007. doi: 10.1088/2057-1976/aaeaaa