468
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the antibacterial activity of CuO and ZnO nanoparticles against uropathogenic Escherichia coli

, & ORCID Icon
Article: 2322776 | Received 11 Oct 2023, Accepted 20 Feb 2024, Published online: 01 Mar 2024

References

  • Cabuhat KSP, Moron-Espiritu LS. Quorum sensing orchestrates antibiotic drug resistance, biofilm formation, and motility in Escherichia coli and quorum quenching activities of plant-derived natural products: a review. J Pure Appl Microbiol. 2022;16(3):1538–1549. doi:10.22207/JPAM.16.3.52
  • Dincer S, Uslu FM, Delik A. Antibiotic resistance in biofilm. In: A Arkut, MS Özdenefe, S Dincer, editors. Bacterial biofilms. London: IntechOpen; 2020. p. 135–148.
  • Solano C, Echeverz M, Lasa I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol. 2014;18:96–104. doi:10.1016/j.mib.2014.02.008
  • Roy R, Tiwari M, Donelli G, et al. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018 Jan 1;9(1):522–554. doi:10.1080/21505594.2017.1313372
  • Preda VG, Săndulescu O. Communication is the key: biofilms, quorum sensing, formation and prevention. Discoveries (Craiova). 2019;7(3):e100. doi:10.15190/d.2019.13
  • Sánchez SV, Navarro N, Catalán-Figueroa J, et al. Nanoparticles as potential novel therapies for urinary tract infections. Front Cell Infect Microbiol. 2021;11:656496. doi:10.3389/fcimb.2021.656496
  • Khameneh B, Diab R, Ghazvini K, et al. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog. 2016;95:32–42. doi:10.1016/j.micpath.2016.02.009
  • Huh JR, Leung MW, Huang P, et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity. Nature. 2011;472(7344):486–490. doi:10.1038/nature09978
  • Zhang Y, Yuan Y, Chen W, et al. Integrated nanotechnology of synergism-sterilization and removing-residues for neomycin through nano-Cu2O. Colloids Surf B Biointerfaces. 2019;183:110371. doi:10.1016/j.colsurfb.2019.110371
  • Wang S, Payne GF, Bentley WE. Repurposing E. coli by engineering quorum sensing and redox genetic circuits. In: F Uchiumi, editor. Gene expression and control. London: IntechOpen; 2018. p. 167–188. doi:10.5772/intechopen.81245
  • Sionov RV, Steinberg D. Targeting the holy triangle of quorum sensing, biofilm formation, and antibiotic resistance in pathogenic bacteria. Microorganisms. 2022;10(6):1239. doi:10.3390/microorganisms10061239
  • Aizawa SI. Flagella. In: D Liu, I Poxton, J Schwartzman, M Sussman, Y-W Tang, editors. Molecular medical microbiology. London: Academic Press; 2015. p. 125–146.
  • Mahdi LH, Jabbar HS, Auda IG. Antibacterial immunomodulatory and antibiofilm triple effect of Salivaricin LHM against Pseudomonas aeruginosa urinary tract infection model. Int J Biol Macromol. 2019;134:1132–1144. doi:10.1016/j.ijbiomac.2019.05.181
  • Ohikhena FU, Wintola OA, Afolayan AJ. Evaluation of the antibacterial and antifungal properties of Phragmanthera capitata (Sprengel) Balle (Loranthaceae), a mistletoe growing on rubber tree, using the dilution techniques. Sci World J. 2017;2017:9658598. doi:10.1155/2017/9658598
  • Chen XP, Ali L, Wu LY, et al. Biofilm formation plays a role in the formation of multidrug-resistant Escherichia coli toward nutrients in microcosm experiments. Front Microbiol. 2018;9:367. doi:10.3389/fmicb.2018.00367
  • Al-Jubori SS, Al-Kadmy IM, Al-Ani JZ. Emergence of multidrug resistance (MDR) Acinetobacter baumannii isolated from Iraqi hospitals. Adv Environ Biol. 2016;10(5):265–276.
  • Shamsee ZR, Al-Saffar AZ, Al-Shanon AF, et al. Cytotoxic and cell cycle arrest induction of pentacyclic triterpenoides separated from Lantana camara leaves against MCF-7 cell line in vitro. Mol Biol Rep. 2019;46(1):381–390. doi:10.1007/s11033-018-4482-3
  • Freshney RI. Culture of animal cells: a manual of basic technique and specialized applications. 6th ed. Hoboken: John Wiley & Sons; 2010.
  • De Oliveira DM, Forde BM, Kidd TJ, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2020 Jun 17;33(3):10–128. doi:10.1128/CMR.00181-19
  • Gauba A, Rahman KM. Evaluation of antibiotic resistance mechanisms in gram-negative bacteria. Antibiotics. 2023 Nov 3;12(11):1590. doi:10.3390/antibiotics12111590
  • Aziz SN, Al Marjani MF, Rheima AM, et al. Antibacterial, antibiofilm, and antipersister cells formation of green synthesis silver nanoparticles and graphene nanosheets against Klebsiella pneumoniae. Rev Res Med Microbiol. 2022;33(1):56–63. doi:10.1097/MRM.0000000000000280
  • Aziz SN, Al Marjani MF. Eradication of Klebsiella pneumoniae biofilms and persister cells using silver nitrate. Kuwait J Sci. 2023;50(1A):1–8. doi:10.48129/kjs.15153
  • Luna-Pineda VM, Ochoa SA, Cruz-Cordova A, et al. Features of urinary Escherichia coli isolated from children with complicated and uncomplicated urinary tract infections in Mexico. PLoS One. 2018 Oct 4;13(10):e0204934.
  • Ballén V, Cepas V, Ratia C, et al. Clinical Escherichia coli: from biofilm formation to new antibiofilm strategies. Microorganisms. 2022;10(6):1103. doi:10.3390/microorganisms10061103
  • Gebreyohannes G, Nyerere A, Bii C, et al. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon. 2019;5(8):e02192. doi:10.1016/j.heliyon.2019.e02192
  • Kalra K, Chhabra V, Prasad N. Antibacterial activities of zinc oxide nanoparticles: a mini-review. J Phys Conf Ser. 2022;2267(1):012049. doi:10.1088/1742-6596/2267/1/012049
  • Şahin E, Musevi SJ, Aslani A. Antibacterial activity against Escherichia coli and characterization of ZnO and ZnO–Al2O3 mixed oxide nanoparticles. Arab J Chem. 2017;10:S230–S235. doi:10.1016/j.arabjc.2012.07.027
  • Shakerimoghaddam A, Ghaemi EA, Jamalli A. Zinc oxide nanoparticle reduced biofilm formation and antigen 43 expressions in uropathogenic Escherichia coli. Iran J Basic Med Sci. 2017;20(4):451–456. doi:10.22038/IJBMS.2017.8589
  • Premanathan M, Karthikeyan K, Jeyasubramanian K, et al. Selective toxicity of ZnO nanoparticles toward gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine. 2011;7(2):184–192. doi:10.1016/j.nano.2010.10.001
  • Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mater. 2008;9(3):035004. doi:10.1088/1468-6996/9/3/035004
  • Agarwala M, Choudhury B, Yadav RN. Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens. Indian J Microbiol. 2014;54(3):365–368. doi:10.1007/s12088-014-0462-z
  • Shehabeldine AM, Amin BH, Hagras FA, et al. Potential antimicrobial and antibiofilm properties of copper oxide nanoparticles: time-kill kinetic essay and ultrastructure of pathogenic bacterial cells. Appl Biochem Biotechnol. 2023;195(1):467–485. doi:10.1007/s12010-022-04120-2
  • Hosseinzadeh E, Alikhani MY, Samarghandy MR. Evaluation of synergistic effect of commercial zinc oxide and copper oxide nanoparticles against gram positive and gram-negative bacteria by fraction inhibitory concentration index. J Adv Med Biomed Res. 2013;20(82):29–41. Available from: https://sid.ir/paper/61165/en
  • Somu P, Khanal HD, Gomez LA, et al. Multifunctional biogenic Al-doped zinc oxide nanostructures synthesized using bioreductant Chaetomorpha linum extricate exhibit excellent photocatalytic and bactericidal ability in industrial effluent treatment. Biomass Conv Bioref. 2022. doi:10.1007/s13399-022-03177-7
  • Kumar H, Rani R. Structural and optical characterization of ZnO nanoparticles synthesized by microemulsion route. ILCPA. 2013;14:26–36. doi:10.18052/www.scipress.com/ILCPA.19.26
  • Alarifi S, Ali D, Verma A, et al. Cytotoxicity and genotoxicity of copper oxide nanoparticles in human skin keratinocytes cells. Int J Toxicol. 2013;32(4):296–307. doi:10.1177/1091581813487563
  • Luna IZ, Bangladesh Atomic Energy Commission. Preparation and characterization of copper oxide nanoparticles synthesized via chemical precipitation method. Open Access Libr J. 2015;2(3):1–8. doi:10.4236/oalib.1101409
  • Sun Y, Chen L, Bao Y, et al. The applications of morphology controlled ZnO in catalysis. Catalysts. 2016;6(12):188. doi:10.3390/catal6120188
  • Zhou X-Q, Hayat Z, Zhang D-D, et al. Zinc oxide nanoparticles: synthesis, characterization, modification, and applications in food and agriculture. Processes. 2023;11(4):1193. doi:10.3390/pr11041193
  • Ahmed A, Thabet A, Esmat M. Copper oxide nanoparticles’ anti-biofilm activity against MDR gram negative bacilli. Sohag Med J. 2023;27(1):10–17. doi:10.21608/smj.2022.179870.1357
  • Kalantar E, Kabir K, Gharibi F, et al. Effect and properties of surface-modified copper doped ZnO nanoparticles (Cu:ZnO NPs) on killing curves of bacterial pathogens. J Med Bacteriol. 2015;2(1–2):20–26. Available from: https://jmb.tums.ac.ir/index.php/jmb/article/view/36
  • Wahab R, Khan ST, Dwivedi S, et al. Effective inhibition of bacterial respiration and growth by CuO microspheres composed of thin nanosheets. Colloids Surf B Biointerfaces. 2013;111:211–217. doi:10.1016/j.colsurfb.2013.06.003
  • Khalid A, Ahmad P, Alharthi AI, et al. Structural, optical and antibacterial efficacy of pure and zinc-doped copper oxide against pathogenic bacteria. Nanomaterials. 2021;11(2):451. doi:10.3390/nano11020451
  • Saleh MM, Sadeq RA, Latif HKA, et al. Zinc oxide nanoparticles inhibits quorum sensing and virulence in Pseudomonas aeruginosa. Afr Health Sci. 2019;19(2):2043–2055. doi:10.4314/ahs.v19i2.28
  • Singh BR, Singh BN, Singh A, et al. Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci Rep. 2015 Sep 8;5:13719. doi:10.1038/srep13719
  • Miller KP, Wang L, Chen YP, et al. Engineering nanoparticles to silence bacterial communication. Front Microbiol. 2015;6:189. doi:10.3389/fmicb.2015.00189
  • Singh N, Paknikar KM, Rajwade J. Gene expression is influenced due to “nano” and “ionic” copper in pre-formed Pseudomonas aeruginosa biofilms. Environ Res. 2019;175:367–375. doi:10.1016/j.envres.2019.05.034
  • Park HJ, Kim HY, Cha S, et al. Removal characteristics of engineered nanoparticles by activated sludge. Chemosphere. 2013;92(5):524–528. doi:10.1016/j.chemosphere.2013.03.020
  • Arul Selvaraj RC, Rajendran M, Nagaiah HP. Re-potentiation of β-lactam antibiotic by synergistic combination with biogenic copper oxide nanocubes against biofilm forming multidrug-resistant bacteria. Molecules. 2019 Aug 22;24(17):3055. doi:10.3390/molecules24173055
  • Zivari Fard M, Fatholahi M, Abyadeh M, et al. The investigation of the cytotoxicity of copper oxide nanoparticles on peripheral blood mononuclear cells. Nanomed Res J. 2020;5(4):364–368. doi:10.22034/nmrj.2020.04.008
  • Cierech M, Wojnarowicz J, Kolenda A, et al. Zinc oxide nanoparticles cytotoxicity and release from newly formed PMMA-ZnO nanocomposites designed for denture bases. Nanomaterials. 2019;9(9):1318. doi:10.3390/nano9091318
  • Reddy ARN, Srividya L. Evaluation of in vitro cytotoxicity of zinc oxide (ZnO) nanoparticles using human cell lines. J Toxicol Risk Assess. 2018;4(9):3. doi:10.23937/2572-4061.1510009
  • Meyer K, Rajanahalli P, Ahamed M, et al. ZnO nanoparticles induce apoptosis in human dermal fibroblasts via p53 and p38 pathways. Toxicol In Vitro. 2011 Dec;25(8):1721–1726. doi:10.1016/j.tiv.2011.08.011