299
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Anticancer agents and genetic identification of Pterospermum, an indigenous plant of Sarawak, Malaysia

, , & ORCID Icon
Article: 2325677 | Received 15 Nov 2022, Accepted 27 Feb 2024, Published online: 12 Mar 2024

References

  • Ganesan SK, Middleton DJ, Wilkie P. A revision of Pterospermum (Malvaceae: Dombeyoideae) in Malesia. Edinb J Botany. 2020;77(2):161–241. doi:10.1017/S0960428619000337.
  • Ibrahim Z, Hassan S, ElAzab H, et al. Cladistic analysis of some taxa in Malvaceae s.l. “Core Malvales” based on anatomical characteristics. Egypt J Exp Biol (Botany). 2018;1:87–105.
  • Alverson WS, Whitlock BA, Nyffeler R, et al. Phylogeny of the core Malvales: evidence from Ndhf sequence data 1. Am J Botany. 1999;86(10):1474–1486. doi:10.2307/2656928.
  • Cvetkovic T, Areces-Berazain F, Hinsinger DD, et al. Phylogenomics resolves deep subfamilial relationships in Malvaceae s.l. Genes Genomes Genet. 2021;11:7.
  • Judd WS, Manchester SR. Circumscription of Malvaceae (Malvales) as determined by a preliminary cladistic analysis of morphological, anatomical, palynological, and chemical characters. Brittonia. 1997;49(3):384–405. doi:10.2307/2807839.
  • Andila PS, Warseno T, Wibawa IPAH, et al. Ethnobotanical and phytochemical study of bayur (Pterospermum javanicum jungh.) on sasak tribe around Mount Rinjani National Park, West Lombok as a conservation effort. J Trop Biodivers Biotechnol. 2021;6:1. doi:10.22146/jtbb.61008.
  • Yamada T, Ngakan OP, Suzuki E. Habitat differences between two congeneric canopy trees, Pterospermum javanicum and Pterospermum diversifolium (Sterculiaceae) in an Indonesian floodplain forest. Tropics. 2007;16:165–169. doi:10.3759/tropics.16.165.
  • Ren Y, Zhu Y, Wang Q, et al. Transcriptome of Pterospermum kingtungense provides implications on the mechanism underlying its rapid vegetative growth and limestone adaption. Sci Rep. 2017;7(1):3198. doi:10.1038/s41598-017-03433-1.
  • Jacob J, Sreejith K. Antioxidant and anti-inflammatory properties of Pterospermum rubiginosum heyne ex wight and arn and Pterospermum reticulatum wight and arn (Sterculiaceae): an in vitro comparative study. Asian J Pharm Clin Res. 2019: 272–275. doi:10.22159/ajpcr.2019.v12i2.28137.
  • Salempa P, Noor A, Harlim T, et al. The antibacterial properties of bayur tissues’ extract (Pterospermum subpeltatum C.B. Rob). J Teknol (Sci Eng). 2014;69(5):87–89.
  • Salempa P. Fitosteroid dari fraksi kloroform kayu akar Bayur (Pterospermum subpeltum C.B. Rob). J Chem. 2012;13(2):47–50.
  • Hidayat S. The use by local communities of plants from Sesaot protected forest, West Nusa Tenggara, Indonesia. Biodiversitas. 2017;18(1):238–247. doi:10.13057/biodiv/d180130.
  • Yang L, Liu R, Fan A, et al. Chemical composition of Pterospermum heterophyllum root and its anti-arthritis effect on adjuvant-induced arthritis in rats via modulation of inflammatory responses. Front Pharmacol. 2020;11:1814.
  • Khare C. Pterospermum canescens Roxb. In: Khare C, editor. Indian Medicinal Plants. New York: Springer; 2007. p. 526.
  • Sam-ang P, Phanumartwiwath A, Liana D, et al. UHPLC-QQQ-MS and RP-HPLC detection of bioactive alizarin and scopoletin metabolites from Morinda citrifolia root extracts and their antitubercular, antibacterial, and antioxidant activities. ACS Omega. 2023;8(32):29615–29624. doi:10.1021/acsomega.3c03656.
  • Mkhonto C, Makananise V, Sagbo IJ, et al. UPLC–QTOF/MS tentative identification of phytochemicals from Vernonia amygdalina Delile acetone and ethanol leaf extracts. J Med Plants Econ Dev. 2023;7(1):a181.
  • Wang X, Zhong L, Zou X, et al. GC-MS and UHPLC-QTOFMS-assisted identification of the differential metabolites and metabolic pathways in key tissues of Pogostemon cablin. Front Plant Sci. 2023;14:1–13.
  • Yan C, Huang Y, Zhang S, et al. Dynamic profiling of intact glucosinolates in radish by combining UHPLC-HRMS/MS and UHPLC-QqQ-MS/MS. Front Plant Sci. 2023;14:1–12.
  • Yang M, Yang J, Su L, et al. Metabolic profile analysis and identification of key metabolites during rice seed germination under low temperature stress. Plant Sci. 2019;289:110282. doi:10.1016/j.plantsci.2019.110282.
  • Sikdar Biotechnology Centre, S., Tiwari S, Vijay Thakur V, et al. An in silico approach for evaluation of rbcL and matK loci for DNA barcoding of Fabaceae family. Int J Chem Stud. 2018;6(6):2446–2451.
  • Kang HM, Son HS, Cui YH, et al. Phytosphingosine exhibits an anti-epithelial–mesenchymal transition function by the inhibition of EGFR signaling in human breast cancer cells. Oncotarget. 2017;8(44):77794. doi:10.18632/oncotarget.20783.
  • Kang Y, Deng Z, Zang R, et al. DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests. Sci Rep. 2017;7(1):12564. doi:10.1038/s41598-017-13057-0.
  • Ho VT, Tran TKP, Vu TTT, et al. Comparison of matK and rbcL DNA barcodes for genetic classification of jewel orchid accessions in Vietnam. J Genet Eng Biotechnol. 2021;19:1. doi:10.1186/s43141-020-00094-y.
  • Setsuko S, Yoshimura K, Ueno S, et al. A DNA barcode database for the woody plants of Japan. Mol Ecol Resour. 2023;23(4):855–871. doi:10.1111/1755-0998.13748.
  • Amandita FY, Rembold K, Vornam B, et al. DNA barcoding of flowering plants in Sumatra, Indonesia. Ecol Evol. 2019;9(4):1858–1868. doi:10.1002/ece3.4875.
  • Newmaster SG, Fazekas AJ, Ragupathy S. DNA barcoding in land plants: evaluation of rbcL in a multigene tiered approach. Can J Botany. 2006;84(3):335–341. doi:10.1139/b06-047.
  • Bieniek W, Mizianty M, Szklarczyk M. Sequence variation at the three chloroplast loci (matK, rbcL, trnH-psbA) in the Triticeae tribe (Poaceae): comments on the relationships and utility in DNA barcoding of selected species. Plant Syst Evol. 2015;301(4):1275–1286. doi:10.1007/s00606-014-1138-1.
  • Hollingsworth PM, Forrest LL, Spouge, JL, et al. A DNA barcode for land plants. Proc Natl Acad Sci USA. 2009;106(31):12794–12797. doi:10.1073/pnas.0905845106.
  • Nyffeler R, Bayer C, Alverson WS, et al. Phylogenetic analysis of the Malvadendrina clade (Malvaceae s.l.) based on plastid DNA sequences. Organ Diver Evol. 2005;5(2):109–123. doi:10.1016/j.ode.2004.08.001.
  • Huang XC, Ci XQ, Conran JG, et al. Application of DNA barcodes in Asian tropical trees - a case study from Xishuangbanna Nature Reserve, Southwest China. PLoS One. 2015;10:6.
  • Tripathi AM, Tyagi A, Kumar A, et al. The internal transcribed spacer (ITS) region and trnhH-psbA are suitable candidate loci for DNA barcoding of tropical tree species of India. PLoS One. 2013;8(2):e105914. doi:10.1371/journal.pone.0057934.
  • Dvorak Z, Vrzal R, Henklova P, et al. JNK inhibitor SP600125 is a partial agonist of human aryl hydrocarbon receptor and induces CYP1A1 and CYP1A2 genes in primary human hepatocytes. Biochem Pharmacol. 2008;75(2):580–588. doi:10.1016/j.bcp.2007.09.013.
  • Messoussi A, Mence Feneyrolles C, Lie Bros A, et al. Recent progress in the design, study, and development of c-Jun N-terminal kinase inhibitors as anticancer agents. Chem Biol. 2014;21:1433–1443. doi:10.1016/j.chembiol.2014.09.007.
  • Huang YC, Pan W, Li H, et al. c-Jun NH2-terminal kinase suppression significantly inhibits the growth of transplanted breast tumors in mice. J Int Med Res. 2020;48:6.
  • Kim JH, Kim TH, Kang HS, et al. SP600125, an inhibitor of Jnk pathway, reduces viability of relatively resistant cancer cells to doxorubicin. Biochem Biophys Res Commun. 2009;387(3):450–455. doi:10.1016/j.bbrc.2009.07.036.
  • Lin Y, Zhang B, Liang H, et al. JNK inhibitor SP600125 enhances TGF-β-induced apoptosis of RBE human cholangiocarcinoma cells in a Smad-dependent manner. Mol Med Rep. 2013;8(6):1623–1629. doi:10.3892/mmr.2013.1711.
  • Yu H, Wu CL, Wang X, et al. SP600125 enhances C-2-induced cell death by the switch from autophagy to apoptosis in bladder cancer cells. J Exp Clin Cancer Res. 2019;38(1):1–13. doi:10.1186/s13046-018-1018-6.
  • Kim M-Y, Jo E-H, Kim Y-C, et al. Indirubin-3-monoxime prevents tumorigenesis in breast cancer through inhibition of JNK1 activity. Biomed Sci Lett. 2021;27(3):134–141. doi:10.15616/BSL.2021.27.3.134.
  • Li CH, Lim SH, Ryu HH, et al. Enhancement of radiosensitivity by inhibition of c-Jun N-terminal kinase activity in a Lewis lung carcinoma-bearing subcutaneous tumor mouse model. Oncol Rep. 2016;36(6):3397–3404. doi:10.3892/or.2016.5204.
  • Alnasser A, Hefnawy M, Alanazi M, et al. Applicable pharmacokinetic study: development and validation of bioanalytical LC-MS/MS method for the simultaneous quantification of cytarabine and glasdegib used for the treatment of acute myeloid leukemia. Arab J Chem. 2023;16(10):105117. doi:10.1016/j.arabjc.2023.105117.
  • di Francia R, Crisci S, de Monaco A, et al. Response and toxicity to cytarabine therapy in leukemia and lymphoma: from dose puzzle to pharmacogenomic biomarkers. Cancers. 2021;13(5):1–39. doi:10.3390/cancers13050966.
  • Faruqi A, Tadi P. Cytarabine. XPharm: comprehensive pharmacology reference. 2021. p. 1–5.
  • Stokvis E, Nan-Offeringa L, Rosing H, et al. Quantitative analysis of ES-285, an investigational marine anticancer drug, in human, mouse, rat, and dog plasma using coupled liquid chromatography and tandem mass spectrometry. J Mass Spectrom. 2003;38:548–554. doi:10.1002/jms.469.
  • Martinková M, Gonda J, Jacková D. Simple marine 1-deoxysphingoid bases: biological activity and syntheses. Tetrahedron: Asymm. 2016;27(24):1187–1212. doi:10.1016/j.tetasy.2016.10.009.
  • Schöffski P, Dumez H, Ruijter R, et al. Spisulosine (ES-285) given as a weekly three-hour intravenous infusion: results of a phase I dose-escalating study in patients with advanced solid malignancies. Cancer Chemother Pharmacol. 2011;68(6):1397–1403. doi:10.1007/s00280-011-1612-1.
  • Chen BS, Yang LH, Ye JL, et al. Diastereoselective synthesis and bioactivity of long-chain anti-2-amino-3-alkanols. Eur J Med Chem. 2011;46(11):5480–5486. doi:10.1016/j.ejmech.2011.09.010.
  • Dasyam N, Munkacsi AB, Fadzilah NH, et al. Identification and bioactivity of 3- epi -xestoaminol C isolated from the New Zealand brown alga Xiphophora chondrophylla. J Nat Prod. 2014;77(6):1519–1523. doi:10.1021/np500171z.
  • Park M-T, Kang JA, Choi J-A, et al. Phytosphingosine induces apoptotic cell death via Caspase 8 activation and Bax translocation in human cancer cells. Clin Cancer Res. 2003;9:878–885.
  • Bagheri E, Hajiaghaalipour F, Nyamathullaa S, et al. Ethanolic extract of Brucea javanica inhibit proliferation of HCT-116 colon cancer cells via caspase activation. RSC Adv. 2018;8:681. doi:10.1039/C7RA09618F.
  • Lachkar F, Ferre P, Foufelle F, et al. Dihydroceramides: their emerging physiological roles and functions in cancer and metabolic diseases. Am J Physiol - Endocrinol Metabol. 2021;320(1):E122–E130. doi:10.1152/ajpendo.00330.2020.
  • Lim J, Kumar AP, Kim C, et al. Study of complexes of C2- and C6-dihydroceramides with transition metal ions using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Bull Korean Chem Soc. 2009;30(2):397–401. doi:10.5012/bkcs.2009.30.2.397.
  • Symolon H, Bushnev A, Peng Q, et al. Enigmol: a novel sphingolipid analogue with anticancer activity against cancer cell lines and in vivo models for intestinal and prostate cancer. Mol Cancer Ther. 2011;10(4):648–657. doi:10.1158/1535-7163.MCT-10-0754.
  • Miller EJ, Mays SG, Baillie MT, et al. Discovery of a fluorinated enigmol analog with enhanced in vivo pharmacokinetic and anti-tumor properties. ACS Med Chem Lett. 2016;7(5):537–542. doi:10.1021/acsmedchemlett.6b00113.
  • Huang M, Lu JJ, Huang MQ, et al. Terpenoids: natural products for cancer therapy. Expert Opin Investig Drugs. 2012;21(12):1801–1818. doi:10.1517/13543784.2012.727395.
  • Yang ZD, Gao K, Jia ZJ. Eudesmane derivatives and other constituents from Saussurea parviflora. Phytochemistry. 2003;62(8):1195–1199. doi:10.1016/S0031-9422(02)00758-6.
  • Patil SV, Mane RP, Mane SD, et al. Chemical composition of the essential oil from seeds of Pinda concanensis: an endemic plant from Western Ghats of India. Int J Pharm Sci Rev Res. 2016;41(1):49–51.
  • Yin T, Zhang H, Zhang W, et al. Chemistry and biological activities of hetisine-type diterpenoid alkaloids. RSC Adv. 2021;11(57):36023–36033. doi:10.1039/D1RA07173D.
  • Zhang N, Song Y, Song Q, et al. Qualitative and quantitative assessments of Aconiti lateralis Radix Praeparata using high-performance liquid chromatography coupled with diode array detection and hybrid ion trap–time-of-flight mass spectrometry. J Chromatogr Sci. 2016;54(6):888–901. doi:10.1093/chromsci/bmv245.
  • Hajjar D, Kremb S, Sioud S, et al. Anti-cancer agents in Saudi Arabian herbals revealed by automated highcontent imaging. PLoS One. 2017;12(6):e0177316. doi:10.1371/journal.pone.0177316.
  • Marcotullio MC, Curini M, Becerra JX. An ethnopharmacological, phytochemical and pharmacological review on Lignans from Mexican Bursera spp. Mol: J Synth Chem Nat Prod Chem. 2018;23(8):1976.
  • Constantinescu T, Lungu CN, Jazvinš´cak M, et al. Anticancer activity of natural and synthetic chalcones. Int J Mol Sci. 2021;22(21):11306. doi:10.3390/ijms222111306.
  • Khan AU, Dagur HS, Khan M, et al. Therapeutic role of flavonoids and flavones in cancer prevention: Current trends and future perspectives. Eur J Med Chem Rep. 2021;3:100010. doi:10.1016/j.ejmcr.2021.100010.
  • Yan X, Qi M, Li P, et al. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action. Cell Biosci. 2017;7(1):1–16. doi:10.1186/s13578-016-0129-z.
  • Pal LC, Prateeksha LC, Singh BN, et al. Phenolics-enriched fraction of Pterospermum lanceifolium Roxb. efficiently reverses the hepatocellular carcinoma in NDEA-induced HCC rats. Nutr Cancer. 2022;74(3):1106–1121. doi:10.1080/01635581.2021.1922716.
  • Tripathi SK, Biswal BK. Pterospermum acerifolium (L.) wild bark extract induces anticarcinogenic effect in human cancer cells through mitochondrial-mediated ROS generation. Mol Biol Rep. 2018;45(6):2283–2294. doi:10.1007/s11033-018-4390-6.
  • Dixit P, Khan MP, Swarnkar G, et al. Osteogenic constituents from Pterospermum acerifolium Willd flowers. Bioorg Med Chem Lett. 2011;21(15):4617–4621. doi:10.1016/j.bmcl.2011.05.087.
  • Thi Khanh Linh L, Thu Uyen N, Huu Dien P, et al. Cytotoxic constituents from Vietnamese Pterospermum truncatolobatum Gagnep. Indian J Nat Prod Res. 2022;13(1):32–35.