281
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing radiation shielding effectiveness: a comparative study of barium-doped tellurite glasses for gamma and neutron radiation protection

ORCID Icon
Article: 2328370 | Received 04 Dec 2023, Accepted 05 Mar 2024, Published online: 11 Mar 2024

References

  • Issa SAM, Ali AM, Tekin HO, et al. Enhancement of nuclear radiation shielding and mechanical properties of YBiBO3 glasses using La2O3. Nucl Eng Technol. 2020;52:1297–1303. doi:10.1016/j.net.2019.11.017
  • Alrowaili ZA, Alwadai N, Eke C, et al. Influence of BaO/ZnCl2 content on gamma transmission properties of the optical TeO2-based glass system. Optik (Stuttg). 2022;270:170054. doi:10.1016/j.ijleo.2022.170054
  • Sayyed MI, Akman F, Geçibesler IH, et al. Measurement of mass attenuation coefficients, effective atomic numbers, and electron densities for different parts of medicinal aromatic plants in low-energy region. Nucl Sci Tech. 2018;29:1–10. doi:10.1007/s41365-018-0475-0
  • Issa SAM, Ali AM, Susoy G, et al. Mechanical, physical and gamma ray shielding properties of xPbO-(50-x) MoO3–50V2O5 (25≤ x≤ 45 mol%) glass system. Ceram Int. 2020; 46:20251–20263.
  • Kaur P, Singh KJ, Thakur S, et al. Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties. Spectrochim Acta A Mol Biomol Spectrosc. 2019;206:367–377. doi:10.1016/j.saa.2018.08.038
  • Abouhaswa AS, Zakaly HMH, Issa SAM, et al. Synthesis, physical, optical, mechanical, and radiation attenuation properties of TiO2–Na2O–Bi2O3–B2O3 glasses. Ceram Int. 2021;47:185–204. doi:10.1016/j.ceramint.2020.08.122
  • Şengul A, Akgüngör K, Akkurt I. Gamma-ray shielding properties of some dosimetric materials. J Aust Ceram Soc. 2023;59:117–126. doi:10.1007/s41779-022-00817-z
  • ALMisned G, Günoğlu K, Özkavak HV, et al. An investigation on gamma-ray and neutron attenuation properties of multi-layered Al/B4C composite. Mater Today Commun. 2023;36:106813. doi:10.1016/j.mtcomm.2023.106813
  • Sayyed MI, Akyildirim H, Al-Buriahi MS, et al. Oxyfluoro-tellurite-zinc glasses and the nuclear-shielding ability under the substitution of AlF 3 by ZnO. Appl Phys A. 2020;126:1–12. doi:10.1007/s00339-019-3265-6
  • Zakariya NI, Kahn MTE. Benefits and biological effects of ionizing radiation, Sch Acad J Biosci. 2014;2:583–591.
  • Desouky O, Ding N, Zhou G. Targeted and non-targeted effects of ionizing radiation. J Radiat Res Appl Sci. 2015;8:247–254.
  • More CV, Alsayed Z, Badawi MS, et al. Polymeric composite materials for radiation shielding: a review. Environ Chem Lett. 2021;19:2057–2090. doi:10.1007/s10311-021-01189-9
  • Tekin HO, Cavli B, Altunsoy EE, et al. An investigation on radiation protection and shielding properties of 16 slice computed tomography (CT) facilities. Int J Comput Exp Sci Eng. 2018;4:37–40. doi:10.22399/ijcesen.408231
  • Singh J, Singh H, Sharma J, et al. Fusible alloys: a potential candidate for gamma rays shield design. Progr Nucl Energy. 2018;106:387–395. doi:10.1016/j.pnucene.2018.04.002
  • Babeer AM, Sayyed MI, Morshidy HY, et al. High transparency of PbO–BaO–Fe2O3–SrO–B2O3 glasses with improved radiation shielding properties. Opt Mater. 2023;145:114387. doi:10.1016/j.optmat.2023.114387
  • Al-Hadeethi Y, Sayyed MI. Effect of Gd2O3 on the radiation shielding characteristics of Sb2O3–PbO–B2O3–Gd2O3 glass system. Ceram Int. 2020;46:13768–13773. doi:10.1016/j.ceramint.2020.02.166
  • El-Taher A, Ali AM, Saddeek YB, et al. Gamma ray shielding and structural properties of iron alkali alumino-phosphate glasses modified by PbO. Radiat Phys Chem. 2019;165:108403. doi:10.1016/j.radphyschem.2019.108403
  • Issa SAM, Sayyed MI, Mostafa AMA, et al. Investigation of mechanical and radiation shielding features of heavy metal oxide based phosphate glasses for gamma radiation attenuation applications. J Mater Sci Mater Electron. 2019;30:12140–12151. doi:10.1007/s10854-019-01572-x
  • Waly E-SA, Al-Qous GS, Bourham MA. Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300 keV. Radiat Phys Chem. 2018;150:120–124. doi:10.1016/j.radphyschem.2018.04.029
  • Tekin HO, Issa SAM, Mahmoud KA-A, et al. Nuclear radiation shielding competences of barium-reinforced borosilicate glasses. Emerg Mater Res. 2020;9:1131–1144.
  • Sayyed MI, Ali AA, Tekin HO, et al. Investigation of gamma-ray shielding properties of bismuth borotellurite glasses using MCNPX code and XCOM program. Appl Phys A. 2019;125:1–7. doi:10.1007/s00339-019-2739-x
  • Rammah YS, Kilic G, El-Mallawany R, et al. Investigation of optical, physical, and gamma-ray shielding features of novel vanadyl boro-phosphate glasses. J Non Cryst Solids. 2020;533:119905. doi:10.1016/j.jnoncrysol.2020.119905
  • Sidkey MA, El Mallawany RA, Abousehly AA, et al. Relaxation of longitudinal ultrasonic waves in some tellurite glasses. Mater Chem Phys. 2002;74:222–229. doi:10.1016/S0254-0584(01)00466-7
  • Dong M, Elbashir BO, Sayyed MI. Enhancement of gamma ray shielding properties by PbO partial replacement of WO3 in ternary 60TeO2–(40-x) WO3–xPbO glass system. Chalcogenide Lett. 2017;14:113–118.
  • Tekin HO, Kassab LRP, Issa SAM, et al. Structural and physical characterization study on synthesized tellurite (TeO2) and germanate (GeO2) glass shields using XRD, Raman spectroscopy, FLUKA and PHITS. Opt Mater (Amst). 2020;110:110533. doi:10.1016/j.optmat.2020.110533
  • Jha A, Richards B, Jose G, et al. Rare-earth ion doped TeO2 and GeO2 glasses as laser materials. Prog Mater Sci. 2012;57:1426–1491. doi:10.1016/j.pmatsci.2012.04.003
  • Ersundu MÇ, Ersundu AE, Sayyed MI, et al. Evaluation of physical, structural properties and shielding parameters for K2O–WO3–TeO2 glasses for gamma ray shielding applications. J Alloys Compd. 2017;714:278–286. doi:10.1016/j.jallcom.2017.04.223
  • Biswas J, Jana S. Visible luminescence and energy migration mechanism of Sm3+ in phospho-tellurite glasses by co-activating with Tb3+ ions for solid state lighting device applications. Phys B Condens Matter. 2023;657:414812. doi:10.1016/j.physb.2023.414812
  • Lu Y, Cai M, Cao R, et al. Ho3+ doped germanate-tellurite glass sensitized by Er3+ and Yb3+ for efficient 2.0 µm laser material. Mater Res Bull. 2016;84:124–131. doi:10.1016/j.materresbull.2016.07.017
  • Boonin K, Yasaka P, Limkitjaroenporn P, et al. Effect of BaO on lead free zinc barium tellurite glass for radiation shielding materials in nuclear application. J Non Cryst Solids. 2020;550:120386. doi:10.1016/j.jnoncrysol.2020.120386
  • Gao S, Liu X, Kang S, et al. 2–3 µm emission and fluorescent decaying behavior in Ho3+-doped tellurium germanate glass. Opt Mater (Amst). 2016;53:44–47. doi:10.1016/j.optmat.2015.12.045
  • Alzahrani JS, Muniz RF, Alrowaili ZA, et al. A synergistic effect of heavy metal oxides to enhance the physical, optical, and radiation-absorption properties of TeO2-Li2O-BaO glasses. Optik (Stuttg). 2022;261:169189. doi:10.1016/j.ijleo.2022.169189
  • Srinivas B, Bhogi A, Naresh P, et al. Fabrication, optical and radiation shielding properties of BaO-TeO2-B2O3-Cr2O3 glass system. Optik (Stuttg). 2022;258:168877. doi:10.1016/j.ijleo.2022.168877
  • Rammah YS, Tekin HO, Sriwunkum C, et al. Investigations on borate glasses within SBC-Bx system for gamma-ray shielding applications. Nucl Eng Technol. 2021;53:282–293. doi:10.1016/j.net.2020.06.034
  • Vani P, Vinitha G, Sayyed MI, et al. Investigation on structural, optical, thermal and gamma photon shielding properties of zinc and barium doped fluorotellurite glasses. J Non Cryst Solids. 2019;511:194–200. doi:10.1016/j.jnoncrysol.2019.02.005
  • Şakar E, Özpolat ÖF, Alım B, et al. PhyPhy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat Phys Chem. 2020;166:108496. doi:10.1016/j.radphyschem.2019.108496
  • Srinivas B, Hameed A, Chary MN, et al. Physical, optical and FT-IR studies of bismuth-boro-tellurite glasses containing BaO as modifier. in: IOP Conf Ser Mater Sci Eng, IOP Publishing. 2018; p. 12022.
  • Podgorsak EB. Interaction of photons with matter, compendium to radiation physics for medical physicists: 300 problems and solutions; 2014; p. 387–514.
  • Swinehart DF. The beer-Lambert law. J Chem Educ. 1962;39:333. doi:10.1021/ed039p333
  • Sayyed MI, Tekin HO, Agar O. Gamma photon and neutron attenuation properties of MgO–BaO–B2O3–TeO2–Cr2O3 glasses: the role of TeO2. Radiat Phys Chem. 2019;163:58–66. doi:10.1016/j.radphyschem.2019.05.012
  • Ali AM, Rammah YS, Sayyed MI, et al. The impact of lead oxide on the optical and gamma shielding properties of barium borate glasses. Appl Phys A. 2020;126:1–9.
  • Mansouri E, Mesbahi A, Malekzadeh R, et al. Shielding characteristics of nanocomposites for protection against X-and gamma rays in medical applications: effect of particle size, photon energy and nano-particle concentration. Radiat Environ Biophys. 2020;59:583–600. doi:10.1007/s00411-020-00865-8
  • More CV, Lokhande RM, Pawar PP. Effective atomic number and electron density of amino acids within the energy range of 0.122–1.330 MeV. Radiat Phys Chem. 2016;125:14–20. doi:10.1016/j.radphyschem.2016.02.024
  • Issa SAM, Ahmad M, Tekin HO, et al. Effect of Bi2O3 content on mechanical and nuclear radiation shielding properties of Bi2O3-MoO3-B2O3-SiO2-Na2O-Fe2O3 glass system. Results Phys. 2019;13:102165. doi:10.1016/j.rinp.2019.102165
  • Lokhande RM, More CV, Surung BS, et al. Determination of attenuation parameters and energy absorption build-up factor of amine group materials. Radiat Phys Chem. 2017;141:292–299. doi:10.1016/j.radphyschem.2017.08.004
  • El-Khayatt AM. Calculation of fast neutron removal cross-sections for some compounds and materials. Ann Nucl Energy. 2010;37:218–222. doi:10.1016/j.anucene.2009.10.022
  • More CV, Alavian H, Pawar PP. Evaluation of gamma ray and neutron attenuation capability of thermoplastic polymers. Appl Radiat Isot. 2021;176:109884. doi:10.1016/j.apradiso.2021.109884
  • Mahmoud KA, Sayyed MI, Tashlykov OL. Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code. Nucl Eng Technol. 2019;51:1835–1841. doi:10.1016/j.net.2019.05.013
  • More CV, Alavian H, Pawar PP. Evaluation of gamma-ray attenuation characteristics of some thermoplastic polymers: experimental, WinXCom and MCNPX studies. J Non Cryst Solids. 2020;546:120277. doi:10.1016/j.jnoncrysol.2020.120277
  • Vignesh S, Winowlin Jappes JT, Nagaveena S, et al. Development of lightweight polymer laminates for radiation shielding and electronics applications. Int J Polym Sci. 2022;2022. doi:10.1155/2022/5252528
  • More CV, Pawar PP, Badawi MS, et al. Thabet, Extensive theoretical study of gamma-ray shielding parameters using epoxy resin-metal chloride mixtures. Nucl Technol Radiat Prot. 2020;35:138–149. doi:10.2298/NTRP2002138M
  • Kilicoglu O, More CV, Kara U, et al. Investigation of the effect of cement type on nuclear shield performance of heavy concrete. Radiat Phys Chem. 2023;209:110954. doi:10.1016/j.radphyschem.2023.110954
  • More CV, Akman F, Dilsiz K, et al. Estimation of neutron and gamma-ray attenuation characteristics of some ferrites: Geant4, FLUKA and WinXCom studies. Appl Radiat Isot. 2023;197:110803. doi:10.1016/j.apradiso.2023.110803
  • Vignesh S, Jappes JTW, Nagaveena S, et al. Preparation of novel in-situ layered B4C and PbO reinforced solution casted layered polymer composites (SCLPC) for augmenting the gamma irradiation shielding capability. Vacuum. 2023;207:111583. doi:10.1016/j.vacuum.2022.111583
  • El-Qahtani ZMH, Shaaban ER, Soraya MM. Attenuation characteristics of high-energy radiation on As-Se-Sn chalcogenide glassy alloy. Chalcogenide Lett. 2021;18:311–326.
  • Ezzeldien M, Salama MA, Hasaneen MF, et al. Multicomponent Ge-As-Te-Pb chalcogenide glasses for radiations shielding applications. Chalcogenide Lett. 2022;19. doi:10.15251/CL.2022.1912.939
  • Alkallas FH, Ben Gouider Trabelsi A, Elaissi S, et al. Investigation of the gamma photon shielding in Se–Te–Ag chalcogenide glasses using the Phy-X/PSD software. Cogent Eng. 2022;9:2116829. doi:10.1080/23311916.2022.2116829
  • Soraya MM, Ahmed FBM, Mahasen MM. Enhancing the physical, optical and shielding properties for ternary Sb2O3–B2O3–K2O glasses. J Mater Sci Mater Electron. 2022;33:22077–22091. doi:10.1007/s10854-022-08971-7