226
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of silver nanoparticle-chitosan composite film for determination of total antioxidant capacity of some fruit juices and plant extracts

, &
Article: 2331436 | Received 03 Oct 2023, Accepted 13 Mar 2024, Published online: 21 Mar 2024

References

  • Shields HJ, Traa A, Van Raamsdonk JM. Beneficial and detrimental effects of reactive oxygen species on lifespan: a comprehensive review of comparative and experimental studies. Front Cell Dev Biol. 2021;9:181. doi:10.3389/fcell.2021.628157
  • Kılınçer M, Çiçek G, Özyürek M, et al. Uncertainty estimation for total antioxidant capacity measurement of apple juice using main CUPRAC method. J Chem Metrol. 2022;16:28–37. doi:10.25135/jcm.67.2201.2311
  • Kongpichitchoke T, Hsu JL, Huang TC. Number of hydroxyl groups on the B-ring of flavonoids affects their antioxidant activity and interaction with phorbol ester binding site of PKCδ C1B domain: in vitro and in silico studies. J Agric Food Chem. 2015;63:4580–4586. doi:10.1021/acs.jafc.5b00312
  • Apak R, Özyürek M, Güçlü K, et al. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J Agric Food Chem. 2016;64:997–1027. doi:10.1021/acs.jafc.5b04739
  • Bedlovičová Z, Strapáč I, Baláž M, et al. A brief overview on antioxidant activity determination of silver nanoparticles. Molecules. 2020;25:3191. doi:10.3390/molecules25143191
  • Elieh-Ali-Komi D, Hamblin MR. Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res (Indore). 2016;4:411–427.
  • Khalaf N, Ahamad T, Naushad M, et al. Chitosan polymer complex derived nanocomposite (AgNPs/NSC) for electrochemical non-enzymatic glucose sensor. Int J Biol Macromol. 2020;146:763–772. doi:10.1016/j.ijbiomac.2019.11.193
  • Maruthupandy M, Rajivgandhi G, Muneeswaran T, et al. Chitosan/silver nanocomposites for colorimetric detection of glucose molecules. Int J Biol Macromol. 2019;121:822–828. doi:10.1016/j.ijbiomac.2018.10.063
  • Imran M, Ehrhardt CJ, Bertino MF, et al. Chitosan stabilized silver nanoparticles for the electrochemical detection of lipopolysaccharide: a facile biosensing approach for gram-negative bacteria. Micromachines (Basel). 2020;11(4):413. doi:10.3390/mi11040413
  • Khan R, Kaushik A, Solanki RS, et al. Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal Chim Acta. 2008;616:207–213. doi:10.1016/j.aca.2008.04.010
  • Wang Y, Qu J, Liu G. Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv Powder Technol. 2010;21:461–467. doi:10.1016/j.apt.2010.01.008
  • Cardenas G, Diaz VJ, Melendrez MF, et al. Colloidal Cu nanoparticles/chitosan composite film obtained by microwave heating for food package applications. Polym Bull. 2009;62:511–524. doi:10.1007/s00289-008-0031-x
  • Syafiuddin A, Salmiati, Salim MR, et al. A review of silver nanoparticles: research trends, global consumption, synthesis, properties, and future challenges. J Chin Chem. 2017;64:732–756. doi:10.1002/jccs.201700067
  • Prieto-Blanco MC, Pardo-Puñal M, Moliner-Martínez Y, et al. Determination of antioxidant activity by in situ synthesis of AgNPs using in-tube SPME coupled on-line to capillary liquid chromatography. Microchim Acta. 2023;190:299. doi:10.1007/s00604-023-05886-w
  • Chen Z, Zhang X, Cao H, et al. Chitosan-capped silver nanoparticles as a highly selective colorimetric probe for visual detection of aromatic ortho-trihydroxy phenols. Analyst. 2013;138:2343–2349. doi:10.1039/c3an36905f
  • Vilela D, Castañeda R, González MC, et al. Fast and reliable determination of antioxidant capacity based on the formation of gold nanoparticles. Microchim Acta. 2015;182:105–111. doi:10.1007/s00604-014-1306-6
  • Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanoparticle Res. 2010;12:1531–1551. doi:10.1007/s11051-010-9900-y
  • Teerasong S, Jinnarak A, Chaneam S, et al. Poly(vinyl alcohol) capped silver nanoparticles for antioxidant assay based on seed–mediated nanoparticle growth. Talanta. 2017;170:193–198. doi:10.1016/j.talanta.2017.04.009
  • Özyürek M, Güngör N, Baki S, et al. Development of a silver nanoparticle–based method for the antioxidant capacity measurement of polyphenols. Anal Chem. 2012;84:8052–8059. doi:10.1021/ac301925b
  • Apak R, Güçlü K, Özyürek M, et al. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric Ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem. 2004;52:7970–7981. doi:10.1021/jf048741x
  • Murphy CJ, Saub TK, Gole AM, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B. 2005;109:13857–13870. doi:10.1021/jp0516846
  • Rostami S, Mehdinia A, Jabbari A. Seed-mediated grown silver nanoparticles as a colorimetric sensor for detection of ascorbic acid. Spectrochim Acta -A: Mol Biomol Spectrosc. 2017;180:204–210. doi:10.1016/j.saa.2017.03.020