321
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, antifungal, antibacterial activity, and computational evaluations of some novel coumarin-1,2,4-triazole hybrid compounds

, ORCID Icon, , , , , & show all
Article: 2331456 | Received 28 Dec 2023, Accepted 13 Mar 2024, Published online: 27 Mar 2024

References

  • Gavrilescu M, Pogăcean MO. Plant protection products and their sustainable and environmentally friendly use. Environ Eng Manag J. 2009;8:607–627. doi: 10.30638/eemj.2009.084
  • Srinivas C, Nirmala Devi D, Narasimha Murthy K, et al. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: biology to diversity– A review. Saudi J Biol Sci. 2019;26(7):1315–1324. doi: 10.1016/j.sjbs.2019.06.002
  • Scherm B, Balmas V, Spanu F, et al. The wheat pathogen Fusarium culmorum. Mol Plant Pathol. 2013;14:323–341. doi: 10.1111/mpp.12011
  • Ćosić J, Vrandečić K, Šimić B, et al. Fusarium species isolated from plant debris in Eastern Croatia. Cereal Res Commun. 2008;36:55–58.
  • Hossain MM, Sultana F, Li W, et al. Sclerotinia sclerotiorum (Lib.) de bary: insights into the pathogenomic features of a global pathogen. Cells. 2023;12:1063. doi: 10.3390/cells12071063
  • Marquez N, Giachero ML, Declerck S, et al. Macrophomina phaseolina: general characteristics of pathogenicity and methods of control. Front Plant Sci. 2021;12:634397. doi: 10.3389/fpls.2021.634397
  • O’Sullivan CA, Belt K, Thatcher LF. Tackling control of a cosmopolitan phytopathogen: sclerotinia. Front Plant Sci. 2021;12:707509. doi: 10.3389/fpls.2021.707509
  • Xin XF, Kvitko B, He S. Pseudomonas syringae: what it takes to be a pathogen. Nat Rev Microbiol. 2018;16:316–328. doi: 10.1038/nrmicro.2018.17
  • Dhaouadi S, Mougou AH, Rhouma A. The plant pathogen Rhodococcus fascians. History, disease symptomatology, host range, pathogenesis and plant–pathogen interaction. Ann Appl Biol. 2020;177:4–15. doi: 10.1111/aab.12600
  • European Commission: Opinion on azole antimycotic resistance. https://food.ec.europa.eu/system/files/2020-12/sci-com_ssc_out278_en.pdf
  • Smith K, Evans DA, El-Hiti GA. Role of modern chemistry in sustainable arable crop protection. Phil Trans R Soc B. 2008;363:623–637. doi: 10.1098/rstb.2007.2174
  • Hellin P, King R, Urban M, et al. The adaptation of fusarium culmorum to DMI fungicides Is mediated by major transcriptome modifications in response to azole fungicide, including the overexpression of a PDR transporter (FcABC1). Front Microbiol. 2018;9:1385. doi: 10.3389/fmicb.2018.01385
  • Berger S, Chazli YE, Babu AF, et al. Azole resistance in Aspergillus fumigatus: a consequence of antifungal use in agriculture? Front Microbiol. 2017;8:1024. doi: 10.3389/fmicb.2017.01024
  • Damalas CA, Eleftherohorinos IG. Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health. 2011;8(5):1402–1419. doi: 10.3390/ijerph8051402
  • Pacholak A, Burlaga N, Frankowski R, et al. Azole fungicides: (Bio)degradation, transformation products and toxicity elucidation. Sci Total Environ. 2022;802:149917. doi: 10.1016/j.scitotenv.2021.149917
  • O'Kennedy R, Thornes RD. Coumarins: biology, applications and mode of action. New York: Wiley Chichester; 1997.
  • Matos MJ, Santana L, Uriarte E, et al. Coumarins — an important class of phytochemicals. In: Phytochemicals - isolation, characterisation and role in human health. InTech; 2015. doi: 10.5772/59982
  • Annunziata F, Pinna C, Dallavalle S, et al. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. Int J Mol Sci. 2020;21(13):4618. doi: 10.3390/ijms21134618
  • Song PP, Zhao J, Liu Z-L, et al. Evaluation of antifungal activities and structure–activity relationships of coumarin derivatives. Pest Manag Sci. 2017;73:94–101. doi: 10.1002/ps.4422
  • Wei Y, Peng W, Wanf D, et al. Design, synthesis, antifungal activity, and 3D-QSAR of coumarin derivatives. J Pestic Sci. 2018;43:88–95. doi: 10.1584/jpestics.D17-075
  • Guo Y, Chen J, Ren D, et al. Synthesis of osthol-based botanical fungicides and their antifungal application in crop protection. Bioorg Med Chem. 2021;40:116184. doi: 10.1016/j.bmc.2021.116184
  • Xin W, Mao Y, Lu F, et al. In vitro fungicidal activity and in planta control efficacy of coumoxystrobin against Magnaporthe oryzae. Pestic Biochem Phys. 2020;162:78–85. doi: 10.1016/j.pestbp.2019.09.004
  • Zhang S-G, Wan Y-Q, Wen Y, et al. Novel coumarin 7-carboxamide/sulfonamide derivatives as potential fungicidal agents: design, synthesis, and biological evaluation. Molecules. 2022;27(20):6904. doi: 10.3390/molecules27206904
  • Chen J, Yu Y, Li S, et al. Resveratrol and coumarin: novel agricultural antibacterial agent against Ralstonia solanacearum in vitro and in vivo. Molecules. 2016;21:1501. doi: 10.3390/molecules21111501
  • Dekić BD, Radulović NS, Dekić VS, et al. Synthesis and antimicrobial activity of new 4-heteroarylamino coumarin derivatives containing nitrogen and sulfur as heteroatoms. Molecules. 2010;15:2246–2256. doi: 10.3390/molecules15042246
  • Rastija V, Vrandečić K, Ćosić J, et al. Biological activities related to plant protection and environmental effects of coumarin derivatives: QSAR and molecular docking studies. Int J Mol Sci. 2021;22(14):7283. doi: 10.3390/ijms22147283
  • Pavela R, Maggi F, Benelli G. Coumarin (2H-1-benzopyran-2-one): a novel and eco-friendly aphicide. Nat Prod Res. 2021;35(9):1566–1571. doi: 10.1080/14786419.2019.1660334
  • Zhang TJ, Ma Z, Ma H, et al. Metabolic pathways modulated by coumarin to inhibit seed germination and early seedling growth in Eleusine indica. Plant Physiol Biochem PPB. 2023;203:108035. doi: 10.1016/j.plaphy.2023.108035
  • Gao H, Shreeve JNM. Azole-based energetic salts. Chem Rev. 2011;111:7377–7436. doi: 10.1021/cr200039c
  • Küçükgüzel ŞG, Çıkla-Süzgün P. Recent advances bioactive 1,2,4-triazole-3-thiones. Eur J Med Chem. 2015;97:830–870. doi: 10.1016/j.ejmech.2014.11.033
  • Aggarwal R, Sumran G. An insight on medicinal attributes of 1,2,4-triazoles. Eur J Med Chem. 2020;205:112652. doi: 10.1016/j.ejmech.2020.112652
  • Tang R, Jin L, Mou C, et al. Synthesis, antifungal and antibacterial activity for novel amide derivatives containing a triazole moiety. Chem Cent J. 2013;7:30. doi: 10.1186/1752-153X-7-30
  • Shao WB, Wang PY, Fang ZM, et al. Synthesis and biological evaluation of 1,2,4-triazole thioethers as both potential virulence factor inhibitors against plant bacterial diseases and agricultural antiviral agents against tobacco mosaic virus infections. J Agric Food Chem. 2021;69(50):15108–15122. doi: 10.1021/acs.jafc.1c05202
  • Keshavarz H, Khodabin G. The role of uniconazole in improving physiological and biochemical attributes of bean (phaseolus vulgaris L.) subjected to drought stress. J Crop Sci Biotechnol. 2019;22:161–168. doi: 10.1007/s12892-019-0050-0
  • Fletcher RA, Gilley A, Davis TD, et al. Triazoles as plant growth regulators and stress protectants. Hortic Rev. 2000;24:55–138. doi: 10.1002/9780470650776.ch3
  • Hajihashemi S. Physiological, biochemical, antioxidant and growth characterizations of gibberellin and paclobutrazol-treated sweet leaf (Stevia rebaudiana B.) herb. J Plant Biochem Biotechnol. 2017;27(2):237–240. doi: 10.1007/s13562-017-0428-4
  • Buchenauer H. Mechanism of action of triazolyl fungicides and related compounds. In: Lyr H, Buchenauer H, editor. Modern selective fungicides: properties, applications, mechanisms of action. Harlow: Longman Scientific and Technical; 1987. p. 205–231.
  • Monk BC, Sagatova AA, Hosseini P, et al. Fungal Lanosterol 14α-demethylase: a target for next-generation antifungal design. Biochim Biophys Acta Proteins Proteom. 2020;1868(3):140206. doi: 10.1016/j.bbapap.2019.02.008
  • Karnaš M, Rastija V, Šubarić D, et al. Green synthesis and acetylcholinesterase inhibition of coumarin-1,2,4-triazole hybrids. Curr Org Chem. 2023;27:883–892. doi: 10.2174/1385272827666230817145725
  • Jayashree BS, Sahu AR, Srinivasa MM, et al. Synthesis, characterization and determination of partition coefficient of some triazole derivatives of coumarins for their anti-microbial activity. Asian J Chem. 2007;19:73–78.
  • Kokil GR, Rewatkar PV, Gosain S, et al. Synthesis and in vitro evaluation of novel 1, 2, 4-triazole derivatives as antifungal agents. Lett Drug Des Discov. 2010;7:46–49. doi: 10.2174/157018010789869415
  • Shi Y, Zhou CH. Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg Med Chem Lett. 2011;21(3):956–960. doi: 10.1016/j.bmcl.2010.12.059
  • Panda SS, Malik R, Chand M, et al. Synthesis and antimicrobial activity of some new 4-triazolylmethoxy-2H-chromen-2-one derivatives. Med Chem Res. 2012;21:3750–3756. doi: 10.1007/s00044-011-9881-0
  • Damu GL, Cui SF, Peng XM, et al. Synthesis and bioactive evaluation of a novel series of coumarinazoles. Bioorg Med Chem Lett. 2014;24(15):3605–3608. doi: 10.1016/j.bmcl.2014.05.029
  • Molnar M, Periš I, Komar M. Choline chloride based deep eutectic solvents as a tuneable medium for synthesis of Coumarinyl 1,2,4-triazoles: effect of solvent type and temperature. Eur J Org Chem. 2019;15:2688–2694. doi: 10.1002/ejoc.201900249
  • Reddy KR, Mamatha R, Babu MSS, et al. Synthesis and antimicrobial activities of some triazole, thiadiazole, and oxadiazole substituted coumarins. J Heterocycl Chem. 2014;51(1):132–137. doi: 10.1002/jhet.1745
  • Al-Amiery AA, Musa AY, Kadhum AA, et al. The use of umbelliferone in the synthesis of new heterocyclic compounds. Molecules. 2011;16(8):6833–6843. doi: 10.3390/molecules16086833
  • Siber T, Bušić V, Zobundžija D, et al. An improved method for the quaternization of nicotinamide and antifungal activities of its derivatives. Molecules. 2019;24:1001. doi: 10.3390/molecules24061001
  • Bušić V, Vrandečić K, Siber T, et al. A rapid microwave induced synthesis of isonicotinamide derivatives and their antifungal activity. Croat Chem Acta. 2019;92:125–135. doi: 10.5562/cca3527
  • Statistica 14.1.0. TIBCO, Santa Clara, CA, USA; 2023.
  • Wiegand I, Hilpert K, Hanckok REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3:163–175. doi: 10.1038/nprot.2007.521
  • Hanwell MD, Curtis DE, Lonie DC, et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4(1):17. doi: 10.1186/1758-2946-4-17
  • Hocquet A, Langgård M. An evaluation of the MM+ force field. J Mol Model. 1998;4:94–112. doi: 10.1007/s008940050128
  • Stewart JJP. Optimization of parameters for semiempirical methods I. Method. J Comput Chem. 1989;10:209–220. doi: 10.1002/jcc.540100208
  • Tetko IV, Gasteiger J, Todeschini R, et al. Virtual computational chemistry laboratory – design and description. J Comput Aided Mol Des. 2005;19:453–463. doi: 10.1007/s10822-005-8694-y
  • Gramatica P, Chirico N, Papa E, et al. QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem. 2013;34:2121–2132. doi: 10.1002/jcc.23361
  • Gramatica P. Principles of QSAR modeling: comments and suggestions from personal experience. IJQSPR. 2020;5:61–97. doi: 10.4018/IJQSPR.20200701.oa1
  • Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci. 2003;22:69–77. doi: 10.1002/qsar.200390007
  • Gramatica P. Principles of QSAR models validation: internal and external. QSAR Comb Sci. 2007;26:694–701. doi: 10.1002/qsar.200610151
  • Consonni V, Ballabio D, Todeschini R. Comments on the definition of the Q2 parameter for QSAR validation. J Chem Inf Model. 2009;49(7):1669–1678. doi: 10.1021/ci900115y
  • Eriksson L, Jaworska J, Worth AP, et al. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect. 2003;111(10):1361–1375. doi: 10.1289/ehp.5758
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461. doi: 10.1002/jcc.21334
  • Tyndall JD, Sabherwal M, Sagatova AA, et al. Structural and functional elucidation of yeast lanosterol 14α-demethylase in complex with agrochemical antifungals. PLoS One. 2016;11(12):e0167485. doi: 10.1371/journal.pone.0167485
  • Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785–2791. doi: 10.1002/jcc.21256
  • Dassault Systemes BIOVIA Discovery studio visualizer, release 2016. Dassault Systèmes Biovia Corp, San Diego, CA, USA; 2017.
  • Herkert PF, Al-Hatmi AMS, de Oliveira Salvador GL, et al. Molecular characterization and antifungal susceptibility of clinical fusarium species from Brazil. Front Microbiol. 2019;10:737. doi: 10.3389/fmicb.2019.00737
  • Yi Y, de Jong A, Frenzel E, et al. Comparative transcriptomics of bacillus mycoides strains in response to potato-root exudates reveals different genetic adaptation of endophytic and soil isolates. Front Microbiol. 2017;8:1487. doi: 10.3389/fmicb.2017.01487
  • Griebsch A, Matschiavelli N, Lewandowska S, et al. Presence of bradyrhizobium sp. under continental conditions in central Europe. Agriculture. 2020;10(10):446. doi: 10.3390/agriculture10100446
  • Kiralj R, Ferreira MMC. Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J Braz Chem Soc. 2009;20(4):770–787. doi: 10.1590/S0103-50532009000400021
  • Masand VH, Mahajan DT, Nazeruddin GM, et al. Effect of information leakage and method of splitting (rational and random) on external predictive ability and behavior of different statistical parameters of QSAR model. Med Chem Res. 2015;24:1241–1264. doi: 10.1007/s00044-014-1193-8
  • Todeschini R, Consonni V. Molecular descriptors for chemoinformatics. Chichester: Wiley-VCH; 2009.
  • Consonni V, Todeschini R, Pavan M. Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors. J Chem Inf Comput Sci. 2002;42(3):682–692. doi: 10.1021/ci015504a
  • Devinyak O, Havrylyuk D, Lesyk R. 3D-MoRSE descriptors explained. J Mol Graph Model. 2014;54:194–203. doi: 10.1016/j.jmgm.2014.10.006
  • Zhang J, Li L, Lv Q, et al. The fungal CYP51s: their functions, structures, related drug resistance, and inhibitors. Front Microbiol. 2019;10:691. doi: 10.3389/fmicb.2019.00691
  • Wang R, Lu Y, Wang S. Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem. 2003;46(12):2287–2303. doi: 10.1021/jm0203783
  • Brenk R, Vetter SW, Boyce SE, et al. Probing molecular docking in a charged model binding site. J Mol Biol. 2006;357(5):1449–1470. doi: 10.1016/j.jmb.2006.01.034