149
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational approach in obtaining analytic solutions of a generalized nonlinear breaking soliton equation with applications in engineering and physics

&
Article: 2331984 | Received 29 Mar 2023, Accepted 11 Mar 2024, Published online: 27 Mar 2024

References

  • Zhang CR, Tian B, Qu QX, et al. Vector bright solitons and their interactions of the couple Fokas–Lenells system in a birefringent optical fiber. Z Angew Math Phys. 2020;71:1–19. doi:10.1007/s00033-019-1225-9
  • Adeyemo OD, Khalique CM, Gasimov YS, et al. Variational and non-variational approaches with Lie algebra of a generalized (3 + 1)-dimensional nonlinear potential Yu–Toda–Sasa–Fukuyama equation in engineering and physics. Alex Eng J. 2023;63:17–43. doi:10.1016/j.aej.2022.07.024
  • Ren B, Cheng XP, Lin J. The (2 + 1)-dimensional Konopelchenko–Dubrovsky equation: nonlocal symmetries and interaction solutions. Nonlinear Dyn. 2016;86:1855–1862. doi:10.1007/s11071-016-2998-4
  • Ren B, Lin J. Nonlocal symmetry and its applications in perturbed mKdV equation. Z Naturforsch. 2016;71:557–564. doi:10.1515/zna-2016-0078
  • Ren B, Lou ZM, Liang ZF, et al. Nonlocal symmetry and explicit solutions for Drinfel'd–Sokolov–Wilson system. Eur Phys J Plus. 2016;131:1–9. doi:10.1140/epjp/i2016-16441-7
  • Wang J, Shehzad K, Seadawy AR. Dynamic study of multi-peak solitons and other wave solutions of new coupled KdV and new coupled Zakharov–Kuznetsov systems with their stability. J Taibah Univ Sci. 2023;17:2163872. doi:10.1080/16583655.2022.2163872
  • Seadawy AR. Stability analysis for Zakharov–Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma. Comput Math Appl. 2014;67:172–180. doi:10.1016/j.camwa.2013.11.001
  • Celik N, Seadawy AR, Özkan YS. A model of solitary waves in a nonlinear elastic circular rod: abundant different type exact solutions and conservation laws. Chaos Solit Fractals. 2021;143:110486. doi:10.1016/j.chaos.2020.110486
  • Younas U, Seadawy AR, Younis M. Optical solitons and closed form solutions to the (3 + 1)-dimensional resonant Schrödinger dynamical wave equation. Int J Mod Phys B. 2020;34:2050291. doi:10.1142/S0217979220502914
  • Rizvi STR, Seadawy AR, Ahmed S, et al. Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrödinger equation. Chaos Solit Fractals. 2021;151:111251. doi:10.1016/j.chaos.2021.111251
  • Kudryashov NA. Analytical theory of nonlinear differential equations. Moskow, Igevsk: Institute of Computer Investigations; 2004.
  • Abramowitz M, Stegun I. Handbook of mathematical functions. New York: Dover; 1972.
  • Adeyemo OD, Khalique CM. Lie group theory, stability analysis with dispersion property, new soliton solutions and conserved quantities of 3D generalized nonlinear wave equation in liquid containing gas bubbles with applications in mechanics of fluids, biomedical sciences and cell biology. Commun Nonlinear Sci Numer Simul. 2023;123:107261. doi:10.1016/j.cnsns.2023.107261
  • Bruzón MS, Gandarias ML. Traveling wave solutions of the K(m,n) equation with generalized evolution. Math. Meth. Appl. Sci.. 2018;41:5851–5857. doi:10.1002/mma.v41.15
  • Steudel H. Uber die Zuordnung zwischen invarianzeigenschaften und Erhaltungssatzen. Z Naturforsch A. 1962;17:129–132. doi:10.1515/zna-1962-0204
  • Adeyemo OD, Khalique CM. Shock waves, periodic, topological kink and singular soliton solutions of a new generalized two dimensional nonlinear wave equation of engineering physics with applications in signal processing, electromagnetism and complex media. Alex Eng J. 2023;73:751–769. doi:10.1016/j.aej.2023.04.049
  • Verheest F, Mace RL, Pillay SR, et al. Unified derivation of Korteweg–de Vries–Zakharov–Kuznetsov equations in multispecies plasmas. J Phys A Math Gen. 2002;35:795. doi:10.1088/0305-4470/35/3/321
  • Khalique CM, Adeyemo OD. Langrangian formulation and solitary wave solutions of a generalized Zakharov–Kuznetsov equation with dual power-law nonlinearity in physical sciences and engineering. J Ocean Eng Sci. 2023;8:152–168. doi:10.1016/j.joes.2021.12.001
  • Ovsiannikov LV. Group analysis of differential equations. New York: Academic Press; 1982.
  • Olver PJ. Applications of lie groups to differential equations. 2nd ed. Berlin: Springer-Verlag; 1993.
  • Anco SC. Generalization of Noether's theorem in modern form to non-variational partial differential equations. In: Melnik R, Makarov R, Belair J, editors. Recent progress and modern challenges in applied mathematics, modelling and computational science. New York, NY: Springer; 2017. p. 119–182. (Fields Institute Communications; 79).
  • Darvishi MT, Najafi M. A modification of extended homoclinic test approach to solve the (3 + 1)-dimensional potential-YTSF equation. Chin Phys Lett. 2011;28:040202. doi:10.1088/0256-307X/28/4/040202
  • Osman MS. One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada–Kotera equation. Nonlinear Dynam. 2019;96:1491–1496. doi:10.1007/s11071-019-04866-1
  • Wazwaz AM. Traveling wave solution to (2 + 1)-dimensional nonlinear evolution equations. J Nat Sci Math. 2007;1:1–13.
  • Gu CH. Soliton theory and its application. Zhejiang: Zhejiang Science and Technology Press; 1990.
  • Salas AH, Gomez CA. Application of the Cole–Hopf transformation for finding exact solutions to several forms of the seventh-order KdV equation. Math Probl Eng. 2010;2010:194329.
  • Weiss J, Tabor M, Carnevale G. The Painlévé property and a partial differential equations with an essential singularity. Phys Lett A. 1985;109:205–208. doi:10.1016/0375-9601(85)90303-2
  • Wazwaz AM. Partial differential equations. Boca Raton, FL: CRC Press; 2002.
  • Zheng CL, Fang JP. New exact solutions and fractional patterns of generalized Broer–Kaup system via a mapping approach. Chaos Soliton Fract. 2006;27:1321–1327. doi:10.1016/j.chaos.2005.04.114
  • Chun C, Sakthivel R. Homotopy perturbation technique for solving two point boundary value problems-comparison with other methods. Comput Phys Commun. 2010;181:1021–1024. doi:10.1016/j.cpc.2010.02.007
  • Zeng X, Wang DS. A generalized extended rational expansion method and its application to (1 + 1)-dimensional dispersive long wave equation. Appl Math Comput. 2009;212:296–304.
  • Kudryashov NA, Loguinova NB. Extended simplest equation method for nonlinear differential equations. Appl Math Comput. 2008;205:396–402.
  • Zhou Y, Wang M, Wang Y. Periodic wave solutions to a coupled KdV equations with variable coefficients. Phys Lett A. 2003;308:31–36. doi:10.1016/S0375-9601(02)01775-9
  • Hirota R. The direct method in soliton theory. Cambridge: Cambridge University Press; 2004.
  • Wang M, Li X, Zhang J. The (G′/G) expansion method and travelling wave solutions for linear evolution equations in mathematical physics. Phys Lett A. 2005;24:1257–1268.
  • Matveev VB, Salle MA. Darboux transformations and solitons. New York: Springer; 1991.
  • Chen Y, Yan Z. New exact solutions of (2 + 1)-dimensional Gardner equation via the new sine-Gordon equation expansion method. Chaos Solitons Fract. 2005;26:399–406. doi:10.1016/j.chaos.2005.01.004
  • He JH, Wu XH. Exp-function method for nonlinear wave equations. Chaos Solitons Fract. 2006;30:700–708. doi:10.1016/j.chaos.2006.03.020
  • Kudryashov NA. Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fract. 2005;24:1217–1231. doi:10.1016/j.chaos.2004.09.109
  • Wazwaz AM. The tanh method for generalized forms of nonlinear heat conduction and Burgers–Fisher equations. Appl Math Comput. 2005;169:321–338.
  • Zhang L, Khalique CM. Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs. Discrete Continuous Dynamic Syst Series S. 2018;11(4):759–772. doi:10.3934/dcdss.2018048
  • Bogoyavlensky OI. Izv Akad Nauk SSSR Ser Mat. 1989;53:243.; Bogoyavlensky OI. Izv Akad Nauk SSSR Ser Mat. 1989;53:907.; Bogoyavlensky OI. Izv Akad Nauk SSSR Ser Mat. 1990;54:123.
  • Li YS, Zhang YJ. Symmetries of a (2 + 1)-dimensional breaking soliton equation. J Phys A Math Gen. 1993;26:7487–7494. doi:10.1088/0305-4470/26/24/021
  • Zheng X, Zhang HQ. New soliton-like solutions for (2 + 1)-dimensional breaking soliton equation. Commun Theor Phys. 2005;43:401–406. doi:10.1088/0253-6102/43/3/005
  • Fu ZT, Liu SD, Liu SK. New kinds of solutions to Gardner equation. Chaos Solitons Fract. 2004;20:301–309. doi:10.1016/S0960-0779(03)00383-7
  • Radha R, Lakshmanan M. Dromion like structures in the (2 + 1)-dimensional breaking soliton equation. Phys Lett A. 1995;197:7–12. doi:10.1016/0375-9601(94)00926-G
  • Zhang JF, Meng JP. New localized coherent structures to the (2 + 1)-dimensional breaking soliton equation. Phys Lett A. 2004;321:173–178. doi:10.1016/j.physleta.2003.12.014
  • Darvishi MT, Najafi M. Some exact solutions of the (2 + 1)-dimensional breaking soliton equation using the three-wave method. Int J Math Comput Sci. 2011;5:1–4.
  • Abadi SAM, Najafi M. Soliton solutions for (2 + 1)-dimensional breaking soliton equation: three wave method. Int J Appl Math Res. 2012;1:141–149.
  • Chen Y, Ma S. Non-traveling wave solutions for the (2 + 1)-dimensional breaking soliton system. Appl Math. 2012;3:813–818. doi:10.4236/am.2012.38122
  • Ma SH, Qiang JY, Fang JP. Annihilation solitons and chaotic solitons for the (2 + 1)-dimensional breaking soliton system. Commun Theo Phys. 2007;48:662–666. doi:10.1088/0253-6102/48/4/019
  • Zhao Z, Dai Z, Mub G. The breather-type and periodic-type soliton solutions for the (2 + 1)-dimensional breaking soliton equation. Comput Math Appl. 2011;61:2048–2052. doi:10.1016/j.camwa.2010.08.065
  • Yao Y, Chen D, Zhang D. Multisoliton solutions to a nonisospectral (2 + 1)-dimensional breaking soliton equation. Phys Lett A. 2008;372:2017–2025. doi:10.1016/j.physleta.2007.10.096
  • Li Z. Exact breather-wave and doubly periodic wave solutions for the (2 + 1)-dimensional typical breaking soliton equation. Appl Math Sci. 2014;8:4631–4636.
  • Wang SF. Analytical multi-soliton solutions of a (2 + 1)-dimensional breaking soliton equation. SpringerPlus. 2016;5:891. doi:10.1186/s40064-016-2403-2
  • Hossen MB, Roshid HO, Ali MZ. Characteristics of the solitary waves and rogue waves with interaction phenomena in a (2 + 1)-dimensional breaking soliton equation. Phys Lett A. 2018;382:1268–1274. doi:10.1016/j.physleta.2018.03.016
  • Ruan HY. On the coherent structures of (2 + 1)-dimensional breaking soliton equation. J Phys Soc Jpn. 2002;71:453–457. doi:10.1143/JPSJ.71.453
  • Peng YZ, Krishnan EV. Two classes of new exact solutions to (2 + 1)-dimensional breaking soliton equation. Commun Theor Phys. 2005;44:807–809. doi:10.1088/6102/44/5/807
  • Kumar M, Tanwar DV, Kumar R. On closed form solutions of (2 + 1)-breaking soliton system by similarity transformations method. Comput Math Appl. 2018;75:218–234. doi:10.1016/j.camwa.2017.09.005
  • Yan-Ze P, Krishnan EV. Two classes of new exact solutions to (2 + 1)-dimensional breaking soliton equation. Commun Theor Phys. 2005;44:807. doi:10.1088/6102/44/5/807
  • Mei J, Zhang H. New types of exact solutions for a breaking soliton equation. Chaos Solitons Fract. 2004;20:771–777. doi:10.1016/j.chaos.2003.08.007
  • Wazwaz AM. Breaking soliton equations and negative-order breaking soliton equations of typical and higher orders. Pramana. 2016;87:68. doi:10.1007/s12043-016-1273-z
  • Demiray ST, Baskonus HM, Bulut H. Application of the HPM for nonlinear (3 + 1)-dimensional breaking soliton equation. Math Eng Sci Aerospace (MESA). 2014; 5:127–133.
  • Darvishi MT, Najafi M, Najafi M. New exact solutions for the (3 + 1)-dimensional breaking soliton equation. Int J Math. 2010;6:134–137.
  • Liu XZ, Yu J, Lou ZM. Residual symmetry, CRE integrability and interaction solutions of the (3 + 1)-dimensional breaking soliton equation. Phys Scripta. 2018;93:085201. doi:10.1088/1402-4896/aacd42
  • Tariq KUH, Seadawy AR. Bistable bright-dark solitary wave solutions of the (3 + 1)-dimensional breaking soliton, Boussinesq equation with dual dispersion and modified Korteweg–de Vries–Kadomtsev–Petviashvili equations and their applications. Results Phys. 2017;7:1143–1149. doi:10.1016/j.rinp.2017.03.001
  • Verma P, Kaur L. Extended exp(−ϕ(ξ))-expansion method for generalized breaking soliton equation. AIP Conf Proc. 2020;2214:020006. doi:10.1063/5.0003399
  • Al-Amr MO. Exact solutions of the generalized (2 + 1)-dimensional nonlinear evolution equations via the modified simple equation method. Comput Math Appl. 2015;69:390–397. doi:10.1016/j.camwa.2014.12.011
  • Xu G, Wazwaz AM. Characteristics of integrability, bidirectional solitons and localized solutions for a (3 + 1)-dimensional generalized breaking soliton equation. Nonlinear Dyn. 2019;96:1989–2000. doi:10.1007/s11071-019-04899-6
  • Gradshteyn IS, Ryzhik IM. Table of integrals, series, and products. 7th ed. New York, NY: Academic Press; 2007.
  • Billingham J, King AC. Wave motion. Cambridge, UK: Cambridge University Press; 2000.
  • Vitanov NK. Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling-wave solutions for a class of PDEs with polynomial nonlinearity. Commun Nonlinear Sci Numer Simul. 2010;15:2050–2060. doi:10.1016/j.cnsns.2009.08.011
  • Zhou Y, Wang M, Li Z. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys Lett A. 1996;216:67–75. doi:10.1016/0375-9601(96)00283-6
  • Radhakrishnan R, Aravinthan K. A dark-bright optical soliton solution to the coupled nonlinear Schrödinger equation. J Phys A. 2007;40:13023. doi:10.1088/1751-8113/40/43/011
  • Foursa D, Emplit P. Experimental investigation of dark soliton amplification in an optical fibre by stimulated Raman scattering. Electron Lett. 1996;32:919–921. doi:10.1049/el:19960614
  • Exact solutions in general relativity. https://en.wikipedia.org/wiki/.
  • Polyanin AD. EqWorld: The world of mathematical equations. https://eqworld.ipmnet.ru/en/solutions.htm.
  • Noether E. Invariante variationsprobleme. Nachr v d Ges d Wiss zu Göttingen. 1918;2:235–257.
  • Sarlet W. Comment on ‘conservation laws of higher order nonlinear PDEs and the variational conservation laws in the class with mixed derivatives’. J Phys A: Math Theor. 2010;43:458001. doi:10.1088/1751-8113/43/45/458001
  • https://eaglepubs.erau.edu/introductiontoaerospaceflightvehicles/chapter/conservation-of-momentum-momentum-equation/.
  • Cheviakov AF. Computation of fluxes of conservation laws. J Eng Math. 2010;66:153–173. doi:10.1007/s10665-009-9307-x