262
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Monitoring the response of Saudi Arabia's largest fossil aquifer system to climate variability

Article: 2331991 | Received 29 Nov 2023, Accepted 14 Mar 2024, Published online: 27 Mar 2024

References

  • Gleeson T, Wada Y, Bierkens MF, et al. Water balance of global aquifers revealed by groundwater footprint. Nature. 2012;488(7410):197–200.
  • Attwa M, El Bastawesy M, Ragab D, et al. Toward an integrated and sustainable water resources management in structurally-controlled watersheds in desert environments using geophysical and remote sensing methods. Sustainability. 2021;13(7):4004.
  • Abotalib AZ, Sultan M, Elkadiri R. Groundwater processes in Saharan Africa: implications for landscape evolution in arid environments. Earth Sci Rev. 2016;156:108–136.
  • Othman A, Sultan M, Becker R, et al. Use of geophysical and remote sensing data for assessment of aquifer depletion and related land deformation. Surv Geophys. 2018;39:543–566. doi:10.1007/s10712-017-9458-7
  • Rausch R, Dirks H. A hydrogeological overview of the upper mega aquifer system on the Arabian platform. Hydrogeol J. 2024. doi:10.1007/s10040-023-02760-0
  • El-Ashquer M, Elsaka B, Mogren S, et al. Assessment of changing satellite gravity mission architectures using terrestrial gravity and GNSS-leveling data in the Kingdom of Saudi Arabia. Egypt J Remote Sens Sp Sci. 2023;26:285–292. doi:10.1016/J.EJRS.2023.03.004
  • Grevengoed L, Abdelmohsen K, Hampton D, et al. Irrigation-induced evaporative water loss in a glacially derived soil site. Soil Use Manag. 2023: 1–11. doi:10.1111/sum.12982
  • Hakimi MH, Varfolomeev MA, Kahal AY, et al. Conventional and unconventional petroleum potentials of the Late Jurassic Madbi organic-rich shales from the Sunah oilfield in the Say’un–Masilah Basin. Eastern Yemen. J Asian Earth Sci. 2022;231:105221.
  • Izadi M, Sultan M, Kadiri RE, et al. A Remote sensing and machine learning – based approach to forecast the onset of harmful algal bloom. Remote Sens. 2021;13(19):3863. doi:10.3390/rs13193863
  • Othman A, Abotalib AZ. Land subsidence triggered by groundwater withdrawal under hyper-arid conditions: case study from Central Saudi Arabia. Environ Earth Sci. 2019;78:1–8.
  • Sataer G, Sultan M, Emil MK, et al. Remote sensing application for landslide detection, monitoring along Eastern Lake Michigan (Miami Park, MI). Remote Sens (Basel). 2022;14(14):3474.
  • Ahmed M. Sustainable management scenarios for northern Africa’s fossil aquifer systems. J Hydrol. 2020;589:125196.
  • Asmoay A. Evaluating groundwater quality and salinity dynamics in the Western-west area of El Minya Governorate, Egypt, based on geochemical modelling and multivariate analysis. J Umm Al-Qura Univ Appll Sci. 2023. doi:10.1007/s43994-023-00081-2
  • Bhaga TD, Dube T, Shekede MD, et al. Impacts of climate variability and drought on surface water resources in Sub-Saharan Africa using remote sensing: a review. Remote Sens (Basel). 2020;12(24):4184.
  • Maliva R, Missimer T. Non-Renewable groundwater resources. Berlin, Heidelberg: Springer; 2012, p. 927–4951. doi:10.1007/978-3-642-29104-3_36
  • Mazzoni A, Heggy E, Scabbia G. Forecasting water budget deficits and groundwater depletion in the main fossil aquifer systems in North Africa and the Arabian Peninsula. Glob Environ Change. 2018;53:157–173.
  • Abdelmohsen K, Sultan M, Ahmed M, et al. Response of deep aquifers to climate variability. Sci Total Environ. 2019;677:530–544.
  • Mohamed M, Othman A, Abotalib AZ, et al. Urban heat island effects on megacities in desert environments using spatial network analysis and remote sensing data: a case study from western Saudi Arabia. Remote Sens (Basel). 2021;13(10):1941.
  • Othman A, El-Saoud WA, Habeebullah T, et al. Risk assessment of flash flood and soil erosion impacts on electrical infrastructures in overcrowded mountainous urban areas under climate change. Reliab Eng Syst Saf. 2023;236:109302.
  • Abdelmohsen K, Sultan M, Save H, et al. Buffering the impacts of extreme climate variability in the highly engineered Tigris Euphrates river system. Sci Rep. 2022;12(1):4178.
  • Abdelmohsen K, Sultan M, Save H, et al. What can the GRACE seasonal cycle tell us about lake-aquifer interactions? Earth Sci Rev. 2020;211:103392.
  • Elsaka B, Abdelmohsen K, Alshehri F, et al. Mass variations in terrestrial water storage over the nile river basin and mega aquifer system as deduced from GRACE-FO Level-2 products and precipitation patterns from GPCP data. Water (Basel). 2022;14:3920.
  • Tabari H. Climate change impact on flood and extreme precipitation increases with water availability. Sci Rep. 2020;10(1):13768.
  • Khalil MM, Hamer K, Pichler T, et al. Fault zone hydrogeology in arid environments: The origin of cold springs in the Wadi Araba Basin, Egypt. Hydrol Processes. 2021;35(5):e14176.
  • Abotalib AZ, Heggy E, El Bastawesy M, et al. Groundwater mounding: a diagnostic feature for mapping aquifer connectivity in hyper-arid deserts. Sci Total Environ. 2021;801:149760.
  • Jasechko S, Perrone D, Befus KM, et al. Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination. Nat Geosci. 2017;10(6):425–429.
  • Dangar S, Asoka A, Mishra V. Causes and implications of groundwater depletion in India: a review. J Hydrol. 2021;596:126103.
  • Famiglietti JS, Lo M, Ho SL, et al. Satellites measure recent rates of groundwater depletion in California's Central Valley. Geophys Res Lett. 2011;38(3): L03403.
  • Noori R, Maghrebi M, Mirchi A, et al. Anthropogenic depletion of Iran’s aquifers. Proc Natl Acad Sci USA. 2021;118(25):e2024221118.
  • Crowley JW, Mitrovica JX, Bailey RC, et al. Annual variations in water storage and precipitation in the Amazon Basin. J Geod. 2008;82:9–13. doi:10.1007/s00190-007-0153-1
  • Tapley BD, Bettadpur S, Ries JC, et al. GRACE measurements of mass variability in the Earth system. Science. 2004;305:503–505. doi:10.1126/science.1099192.
  • Syed TH, Famiglietti JS, Chen J, et al. Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance. Geophys Res Lett. 2005;32:L24404. doi:10.1029/2005GL024851
  • Xavier L, Becker M, Cazenave A, et al. Interannual variability in water storage over 2003–2008 in the Amazon Basin from GRACE space gravimetry, in situ river level and precipitation data. Remote Sens Environ. 2010;114:1629–1637. doi:10.1016/J.RSE.2010.02.005
  • Abdelmalik KW, Abdelmohsen K. GRACE and TRMM mission: the role of remote sensing techniques for monitoring spatio-temporal change in total water mass, Nile basin. J Afr Earth Sci. 2019;160:103596.
  • Ahmed M, Abdelmohsen K. Quantifying modern recharge and depletion rates of the Nubian Aquifer in Egypt. Surv Geophys. 2018;39:729–751.
  • Földváry L, Abdelmohsen K, Ambrus B. Water density variations of the Aral sea from GRACE and GRACE-FO monthly solutions. Water (Basel). 2023;15:1725. doi:10.3390/W15091725
  • Mohamed A, Othman A, Galal WF, et al. Integrated geophysical approach of groundwater potential in Wadi Ranyah, Saudi Arabia, using gravity, electrical resistivity, and remote-sensing techniques. Remote Sens (Basel). 2023;15(7):1808.
  • Sahour H, Sultan M, Abdellatif B, et al. Identification of shallow groundwater in arid lands using multi-sensor remote sensing data and machine learning algorithms. J Hydrol. 2022;614:128509.
  • Sultan M, Sturchio NC, Alsefry S, et al. Assessment of age, origin, and sustainability of fossil aquifers: a geochemical and remote sensing–based approach. J Hydrol. 2019. doi:10.1016/J.JHYDROL.2019.06.017
  • Voss KA, Famiglietti JS, Lo M, et al. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour Res. 2013;49:904–914. doi:10.1002/wrcr.20078
  • Rodell M, Velicogna I, Famiglietti JS. Satellite-based estimates of groundwater depletion in India. Nature. 2009;460:999–1002. doi:10.1038/nature08238
  • Tiwari VM, Wahr J, Swenson S. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett. 2009;36; doi:10.1029/2009GL039401
  • Ferreira VG, Gong Z, Andam-Akorful SA. Monitoring mass changes in the Volta River basin using GRACE satellite gravity and TRMM precipitation. Boletim de Ciências Geodésicas. 2012;18:549–563. doi:10.1590/S1982-21702012000400003
  • Feng W, Zhong M, Lemoine J-M, et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour Res. 2013;49:2110–2118. doi:10.1002/wrcr.20192
  • Sahour H, Sultan M, Vazifedan M, et al. Statistical applications to downscale GRACE-derived terrestrial water storage data and to fill temporal gaps. Remote Sens (Basel). 2020;12:533. doi:10.3390/RS12030533
  • Swenson S, Wahr J. Monitoring the water balance of Lake Victoria, east Africa, from space. J Hydrol. 2009;730:163–176.
  • Wang X, de Linage C, Famiglietti J, et al. Gravity recovery and climate experiment (GRACE) detection of water storage changes in the three gorges reservoir of china and comparison with in situ measurements. Water Resour Res. 2011;47:W12502. doi:10.1029/2011WR010534
  • Reager JT, Famiglietti JS. UC Irvine faculty publications title global terrestrial water storage capacity and flood potential using GRACE. Hydrol Land Surf Stud. 2009: 1. doi:10.1029/2009GL040826
  • Li B, et al. Global GRACE Data Assimilation for Groundwater and Drought Monitoring: Advances and Challenges. Water Resour Res. 2019;55:7564–7586. doi:10.1029/2018WR024618
  • Rodell M, Famiglietti JS, Wiese DN, et al. Emerging trends in global freshwater availability. Nature. 2018. doi:10.1038/s41586-018-0123-1
  • Alghafli K, Shi X, Sloan W, et al. Groundwater recharge estimation using in-situ and GRACE observations in the eastern region of the United Arab Emirates. Sci Total Environ. 2023;867:161489. doi:10.1016/j.scitotenv.2023.161489
  • Seraphin P, Gonçalvès J, Hamelin B, et al. Influence of intensive agriculture and geological heterogeneity on the recharge of an arid aquifer system (Saq–Ram, Arabian Peninsula) inferred from GRACE data. Hydrol Earth Syst Sci. 2022;26(22):5757–5771.
  • Scanlon BR, Rateb A, Anyamba A, et al. Linkages between GRACE water storage, hydrologic extremes, and climate teleconnections in major African aquifers. Environ Res Lett. 2022;17(1):014046.
  • Jasechko S, Seybold H, Perrone D, et al. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature. 2024;625:715–721. doi:10.1038/s41586-023-06879-8
  • Othman A, Ahmed OB, Abotalib AZ, et al. Assessment of supplied water quality during mass gatherings in arid environments. J King Saud Univ Sci. 2022;34(4):101918.
  • Almazroui M. Rainfall trends and extremes in Saudi Arabia in recent decades. Atmosphere (Basel). 2020;11:964), doi:10.3390/atmos11090964
  • Almazroui M, Saeed S. Contribution of extreme daily precipitation to total rainfall over the Arabian Peninsula. Atmos Res. 2020;231:104672.
  • Al-Sakkaf AS, Zhang J, Yao F, et al. Assessing exposure to climate extremes over the Arabian Peninsula using ERA5 reanalysis data: spatial distribution and temporal trends. Atmos Res. 2024;300:107224.
  • Luong TM, Dasari HP, Hoteit I. Extreme precipitation events are becoming less frequent but more intense over Jeddah, Saudi Arabia. Are shifting weather regimes the cause? Atmos Sci Lett. 2020;21(8):e981.
  • Elhebiry MS, Sultan M, Abu El-Leil I, et al. Paleozoic glaciation in NE Africa: field and remote sensing-based evidence from the South Eastern Desert of Egypt. Int Geol Rev. 2020;62(9):1187–1204.
  • Othman A, Shaaban F, Abotalib AZ, et al. Hazard assessment of rockfalls in mountainous urban areas, western Saudi Arabia. Arab J Sci Eng. 2021;46:5717–5731.
  • Fairer GM. (1983). Reconnaissance Geology of the Ishash Quadrangle, Sheet 26/39C, Kingdom of Saudi Arabia, U. S. Geological Survey, No. 83-821, Reston, Virginia, Saudi Arabia.
  • Sharaf MA, Hussein MT. Groundwater quality in the Saq aquifer, Saudi Arabia. Hydrol Sci J. 1996;41:683–696. doi:10.1080/02626669609491539
  • Al-Saud M, Teutsch G, Schüth C, et al. Challenges for an integrated groundwater management in the Kingdom of Saudi Arabia. Int J Water Resour Arid Environ. 2011;1:65–70.
  • UN-ESCWA and BGR. (2013). United Nations economic and social commission for western Asia; Bundesanstalt fu¨ r Geowissenschaften und Rohstoffe. Inventory of Shared Water Resources in Western Asia, Beirut.
  • Meissner CR, Griffin MB, Riddler GP, et al. Preliminary Geologic Map of the Wadi As Sirhan Quadrangle, sheet 30C, Kingdom of Saudi Arabia, 1990. https://pubs.usgs.gov/of/1990/0263/report.pdf
  • ACSAD (Arab Center for the Studies of Arid Zones and Dry Lands). Hamad Basin studies. Part 1: natural and human resources, groundwater resources. Water Resources Department. Damascus: 1983.
  • UN-ESCWA B. Inventory of shared water resources in western Asia: United nations economic and social commission for western Asia. Federal Institute for Geosciences and Natural Resources, Beirut. Lebanon; 2013.
  • Abotalib AZ, Heggy E, Scabbia G, et al. Groundwater dynamics in fossil fractured carbonate aquifers in Eastern Arabian Peninsula: A preliminary investigation. J Hydrol. 2019;571:460–470.
  • BRGM and Abunayyan. Investigations for updating the groundwater mathematical model (s) of the Saq and overlying aquifers. Dhahran: Ministry of Water and Electricity; 2006.
  • Othman A, Abdelmohsen K. A geophysical and remote sensing-based approach for monitoring land subsidence in Saudi Arabia. In:  Al Saud, M, editor. Applications of space techniques on the natural hazards in the MENA region. Cham: Springer; 2022. p. 477–1494.
  • Wouters B, Bonin JA, Chambers DP, et al. GRACE, time-varying gravity, Earth system dynamics and climate change. Rep Prog Phys. 2014;77. doi:10.1088/0034-4885/77/11/116801
  • Save H, Bettadpur S, Tapley BD. High-resolution CSR GRACE RL05 mascons. J Geophys Res Solid Earth. 2016;121(10):7547–7569.
  • Save H, Bettadpur S, Tapley BD. Reducing errors in the GRACE gravity solutions using regularization. J Geod. 2012;86:695–711.