236
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Inspection of viscoelastic Ag+Cu+Fe3O4+Al2O3/kerosene oil tetra-hybrid nanofluid flow across a stretchable rotating disk with exponentially varying viscosity

ORCID Icon & ORCID Icon
Article: 2336327 | Received 11 Jan 2024, Accepted 25 Mar 2024, Published online: 03 Apr 2024

References

  • Saba F, Ahmed N, Hussain S, et al. Thermal analysis of nanofluid flow over a curved stretching surface suspended by carbon nanotubes with internal heat generation. Appl Sci. 2018;8(3):395. doi: 10.3390/app8030395.
  • Gholinia M, Gholinia S, Hosseinzadeh K, et al. Investigation on ethylene glycol nano fluid flow over a vertical permeable circular cylinder under effect of magnetic field. Results Phys. 2018;9:1525–1533. doi: 10.1016/j.rinp.2018.04.070.
  • Lund LA, Omar Z, Khan I, et al. Multiple solutions of Cu-C6H9NaO7 and Ag-C6H9NaO7 nanofluids flow over nonlinear shrinking surface. J Cent South Univ. 2019;26(5):1283–1293. doi: 10.1007/s11771-019-4087-6.
  • Butt AW, Akbar NS, Tripathi D, et al. Analytical investigation of electroosmotically regulated peristaltic propulsion of Cu-water nanofluid through a microtube. Iraqi J Sci. 2023;2354–2367. doi: 10.24996/ijs.2023.64.5.21.
  • He JH, Abd Elazem NY. The carbon nanotube-embedded boundary layer theory for energy harvesting. FU Mech Eng. 2022;20(2):211–235. doi: 10.22190/FUME220221011H.
  • Nadeem S, Abbas N, Khan AU. Characteristics of three dimensional stagnation point flow of Hybrid nanofluid past a circular cylinder. Results Phys. 2018;8:829–835. doi: 10.1016/j.rinp.2018.01.024.
  • Anuar NS, Bachok N, Arifin NM, et al. Effect of suction/injection on stagnation point flow of hybrid nanofluid over an exponentially shrinking sheet with stability analysis. CFD Letters. 2019;11(12):21–33.
  • Acharya N. On the flow patterns and thermal behaviour of hybrid nanofluid flow inside a microchannel in presence of radiative solar energy. J Therm Anal Calorim. 2020;141:1425–1442. doi: 10.1007/s10973-019-09111-w.
  • Alizadeh R, Abad JMN, Ameri A, et al. A machine learning approach to the prediction of transport and thermodynamic processes in multiphysics systems - heat transfer in a hybrid nanofluid flow in porous media. J Taiwan Inst Chem Eng. 2021;124:290–306. doi: 10.1016/j.jtice.2021.03.043.
  • Bhatti MM, Öztop HF, Ellahi R. Study of the magnetized hybrid nanofluid flow through a flat elastic surface with applications in solar energy. Materials (Basel). 2022;15(21):7507. doi: 10.3390/ma15217507.
  • Munawar S, Saleem N, Tripathi D. Cilia and electroosmosis induced double diffusive transport of hybrid nanofluids through microchannel and entropy analysis. Nonlinear Eng. 2023;12(1):20220287. doi: 10.1515/nleng-2022-0287.
  • Paul A, Sarma N, Patgiri B. Mixed convection of shear-thinning hybrid nanofluid flow across a radiative unsteady cone with suction and slip effect. Mat Today Commun. 2023;37:107522. doi: 10.1016/j.mtcomm.2023.107522.
  • Shahzad F, Jamshed W, Eid MR, et al. The effect of pressure gradient on MHD flow of a tri-hybrid Newtonian nanofluid in a circular channel. J Magn Magn Mater. 2023;568:170320. doi: 10.1016/j.jmmm.2022.170320.
  • Paul A, Patgiri B, Sarma N. Darcy-Forchheimer flow of Ag–ZnO–CoFe2O4/H2O Casson ternary hybrid nanofluid induced by a rotatory disk with EMHD. Int J Ambient Energy. 2024;45(1):2313697. doi: 10.1080/01430750.2024.2313697.
  • Paul A, Patgiri B, Sarma N. Transformer oil-based Casson ternary hybrid nanofluid flow configured by a porous rotating disk with Hall current. ZAMM. 2024: e202300704. doi: 10.1002/zamm.202300704.
  • Mahapatra B, Bandopadhyay A. Numerical analysis of combined electroosmotic-pressure driven flow of a viscoelastic fluid over high zeta potential modulated surfaces. Phys Fluids. 2021;33(3). doi: 10.1063/5.0033088.
  • Megahed AM, Reddy MG. Numerical treatment for MHD viscoelastic fluid flow with variable fluid properties and viscous dissipation. Indian J Phys. 2021;95:673–679. doi: 10.1007/s12648-020-01717-3.
  • Mahapatra B, Bandopadhyay A. Effect of skimming layer in an electroosmotically driven viscoelastic fluid flow over charge modulated walls. Electrophoresis. 2022;43(5-6):724–731. doi: 10.1002/elps.202100221.
  • Maranna T, Mahabaleshwar US, Perez LM, et al. Flow of viscoelastic ternary nanofluid over a shrinking porous medium with heat Source/Sink and radiation. Therm Sci Eng Prog. 2023;40:101791. doi: 10.1016/j.tsep.2023.101791.
  • Prabhavathi B, Reddy PS, Vijaya RB. Heat and mass transfer enhancement of SWCNTs and MWCNTs based Maxwell nanofluid flow over a vertical cone with slip effects. Powder Technol. 2018;340:253–263. doi: 10.1016/j.powtec.2018.08.089.
  • Parvin S, Isa SSPM, Al-Duais FS, et al. The flow, thermal and mass properties of Soret-Dufour model of magnetized Maxwell nanofluid flow over a shrinkage inclined surface. PLoS One. 2022;17(4):e0267148. doi: 10.1371/journal.pone.0267148.
  • Iranian D, Sudarmozhi K, Khan I, et al. Significance of heat generation and impact of suction/injection on Maxwell fluid over a horizontal plate by the influence of radiation. Int J Thermofluids. 2023: 100396. doi: 10.1016/j.ijft.2023.100396.
  • Salahuddin T, Awais M, Khan M, et al. Analysis of transport phenomenon in cross fluid using Cattaneo-Christov theory for heat and mass fluxes with variable viscosity. Int Commun Heat Mass Transfer. 2021;129:105664. doi: 10.1016/j.icheatmasstransfer.2021.105664.
  • Kumar K, Chauhan PR, Kumar R, et al. Irreversibility analysis in Al2O3-water nanofluid flow with variable property. FU Mech Eng. 2022;20(3):503–518. doi: 10.22190/FUME210308050K.
  • Rafique K, Mahmood Z, Khan U. Mathematical analysis of MHD hybrid nanofluid flow with variable viscosity and slip conditions over a stretching surface. Mat Today Commun. 2023;36:106692. doi: 10.1016/j.mtcomm.2023.106692.
  • Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys. 2009;106(1). doi: 10.1063/1.3155999.
  • Madhesh D, Kalaiselvam S. Experimental study on the heat transfer and flow properties of Ag–ethylene glycol nanofluid as a coolant. Heat Mass Transfer. 2014;50:1597–1607. doi: 10.1007/s00231-014-1370-9.
  • Elias MM, Miqdad M, Mahbubul IM, et al. Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger. Int Commun Heat Mass Transfer. 2013;44:93–99. doi: 10.1016/j.icheatmasstransfer.2013.03.014.
  • Khashi'ie NS, Arifin NM, Sheremet M, et al. Shape factor effect of radiative Cu–Al2O3/H2O hybrid nanofluid flow towards an EMHD plate. Case Stud Therm Eng. 2021;26:101199. doi: 10.1016/j.csite.2021.101199.
  • Waqas H, Farooq U, Muhammad T, et al. Importance of shape factor in Sisko nanofluid flow considering gold nanoparticles. Alexandria Eng J. 2022;61(5):3665–3672. doi: 10.1016/j.aej.2021.09.010.
  • AlBaidani MM, Mishra NK, Alam MM, et al. Numerical analysis of magneto-radiated annular fin natural-convective heat transfer performance using advanced ternary nanofluid considering shape factors with heating source. Case Stud Therm Eng. 2023;44:102825. doi: 10.1016/j.csite.2023.102825.
  • Gupta G, Rana P. Comparative study on Rosseland’s heat flux on three-dimensional MHD stagnation-point multiple slip flow of ternary hybrid nanofluid over a stretchable rotating disk. Mathematics. 2022;10(18):3342. doi: 10.3390/math10183342.
  • Prakash J, Tripathi D, Akkurt N, et al. Entropy analysis of hybrid nanofluid flow over a rotating porous disk: a multivariate analysis. Spec Top Rev Porous Media. 2023;14(4). doi: 10.1615/SpecialTopicsRevPorousMedia.v14.i4.30.
  • Kou SJ, He CH, Men XC, et al. Fractal boundary layer and its basic properties. Fractals. 2022;30(09):2250172. doi: 10.1142/S0218348X22501729.
  • Doranehgard MH, Gupta V, Li LK. Quenching and amplification of thermoacoustic oscillations in two nonidentical Rijke tubes interacting via time-delay and dissipative coupling. Physical Review E. 2022;105(6):064206. doi: 10.1103/PhysRevE.105.064206.
  • Sohani A, Cornaro C, Shahverdian MH, et al. Building integrated photovoltaic/thermal technologies in Middle Eastern and North African countries: Current trends and future perspectives. Renew Sustain Energy Rev. 2023;182:113370. doi: 10.1016/j.rser.2023.113370.
  • Sayed ET, Olabi AG, Elsaid K, et al. Application of artificial intelligence techniques for modeling, optimizing, and controlling desalination systems powered by renewable energy resources. J Clean Prod. 2023;413:137486. doi: 10.1016/j.jclepro.2023.137486.
  • Al Nuwairan M, Hafeez A, Khalid A, et al. Heat generation/absorption effects on radiative stagnation point flow of Maxwell nanofluid by a rotating disk influenced by activation energy. Case Stud Therm Eng. 2022;35:102047. doi: 10.1016/j.csite.2022.102047.
  • Ijaz M, Ayub M, Khan H. Entropy generation and activation energy mechanism in nonlinear radiative flow of Sisko nanofluid: rotating disk. Heliyon. 2019;5(6):e01863. doi: 10.1016/j.heliyon.2019.e01863.
  • Tulu A, Ibrahim W. Effects of second-order slip flow and variable viscosity on natural convection flow of (CNTs-Fe_3O_4)/water hybrid nanofluids due to stretching surface. Math Prob Eng. 2021;1–18. doi: 10.1155/2021/8407194.
  • Ahmed J, Khan M, Ahmad L. Joule heating effects in thermally radiative swirling flow of Maxwell fluid over a porous rotating disk. Int J Thermophys. 2019;40:1–18. doi: 10.1007/s10765-019-2561-x.
  • Khan WA, Rashad AM, El-Kabeir SMM, et al. Framing the MHD micropolar-nanofluid flow in natural convection heat transfer over a radiative truncated cone. Processes. 2020;8(4):379. doi: 10.3390/pr8040379.
  • Khashi’ie NS, Waini I, Arifin NM, et al. Unsteady squeezing flow of Cu-Al2O3/water hybrid nanofluid in a horizontal channel with magnetic field. Sci Rep. 2021;11(1):14128. doi: 10.1038/s41598-021-93644-4.
  • Algehyne EA, Ahammad NA, Elnair ME, et al. Enhancing heat transfer in blood hybrid nanofluid flow with A g–T i O 2 nanoparticles and electrical field in a tilted cylindrical W-shape stenosis artery: a finite difference approach. Symmetry (Basel). 2023;15(6):1242. doi: 10.3390/sym15061242.
  • Rashid U, Baleanu D, Iqbal A, et al. Shape effect of nanosize particles on magnetohydrodynamic nanofluid flow and heat transfer over a stretching sheet with entropy generation. Entropy. 2020;22(10):1171. doi: 10.3390/e22101171.
  • Ahmed J, Khan M, Ahmad L, et al. Thermally radiative flow of Maxwell nanofluid over a permeable rotating disk. Phys Scr. 2019;94(12):125016. doi: 10.1088/1402-4896/ab3b9a.
  • Dhar SN, Hassan MA. Experimental study of heat transfer and pressure drop phenomena in kerosene-graphene nanoplatelets in a mini channel heat sink. SAE Technical Paper; 2022. doi: 10.4271/2022-01-5093.
  • Sawicka D, Cieśliński JT, Smolen S. Experimental investigation of free convection heat transfer from horizontal cylinder to nanofluids. Energies. 2021;14(10):2909. doi: 10.3390/en14102909.
  • Apmann K, Fulmer R, Scherer B, et al. Nanofluid heat transfer: enhancement of the heat transfer coefficient inside microchannels. Nanomaterials. 2022;12(4):615. doi: 10.3390/nano12040615.
  • Yin Z, Bao F, Tu C, et al. Numerical and experimental studies of heat and flow characteristics in a laminar pipe flow of nanofluid. J Exp Nanosci. 2018;13(1):82–94. doi: 10.1080/17458080.2017.1413599.
  • Shampine LF, Kierzenka J, Reichelt MW. Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Tutorial Notes. 2000;1–27.