100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Neuroprotective properties of UV-C treated Bacopa floribunda leaves: in vitro and in vivo studies

, ORCID Icon &
Article: 2337970 | Received 17 Oct 2022, Accepted 28 Mar 2024, Published online: 30 Apr 2024

References

  • Yildirim AB. Ultraviolet-B-induced changes on phenolic compounds, antioxidant capacity and HPLC profile of in vitro-grown plant materials in Echium orientale L. Ind Crops Prod. 2020;153:112584. doi:10.1016/j.indcrop.2020.112584
  • Adetuyi FO, Karigidi KO, Akintimehin ES. Effect of postharvest UV-C treatments on the bioactive components, antioxidant and inhibitory properties of Clerodendrum volubile leaves. J Saudi Soc Agric Sci. 2020;19:7–13.
  • Castillejo N, Martinez-Zamora L, Artes-Hernandez F. Postharvest UV radiation enhanced biosynthesis of flavonoids and carotenes in bell peppers. Postharvest Biol Technol. 2022;184:111774. doi:10.1016/j.postharvbio.2021.111774
  • Adetuyi FO, Karigidi KO, Akintimehinm ES, et al. Effect of postharvest UV-C irradiation as physical elicitor on anti-nutritional factor, B-vitamins and mineral profile of Clerodendrum volubile leaves. Croat J Food Tech Biotech Nutr. 2019;14(3-4):113–120.
  • Moreno C, Andrade-Cuvi MJ, Zaro MJ, et al. Short UV-C treatment prevents browning and extends the shelf-life of fresh-cut Carambola. J Food Qual. 2017: 1–9. doi:10.1155/2017/2548791
  • Ehrenberg AJ, Khatun A, Coomans E, et al. Relevance of biomarkers across different neurodegenerative diseases. Alzheimer’s Res Ther. 2020;12:1–11. doi:10.1186/s13195-020-00637-y
  • Liao Z, Wei W, Yang M, et al. Academic publication of neurodegenerative diseases from a bibliographic perspective: a comparative scientometric analysis. Front Aging Neurosci. 2021;13:722944. doi:10.3389/fnagi.2021.722944
  • Ademosun AO, Adebayo AA, Popoola TV, et al. Shaddock (Citrus maxima) peels extract restores cognitive function, cholinergic and purinergic enzyme systems in scopolamine-induced amnesic rats. Drug Chem Toxicol. 2022;45:1073–1080. doi:10.1080/01480545.2020.1808668
  • Di Paolo M, Papi L, Gori F, et al. Natural products in neurodegenerative diseases: a great promise but an ethical challenge. Int J Mol Sci. 2019;20(20):5170. doi:10.3390/ijms20205170
  • Olatunji BP, Fasola TR, Onasanwo SA, et al. Neuronal alterations and antioxidant status of lipopolysaccharide induced neuronal damage in mice: efficacy of three medicinal plants. J App Pharm Sci. 2017;7(12):156–162.
  • Olatunji PB, Fasola RT, Onasanwo SA. Ethnobotanical survey of plants used as memory enhancers in three states of southwestern Nigeria. J App Pharm Sci. 2016;6:209–214.
  • Adetuyi FO, Akintimehin ES, Karigidi KO. Comparative analysis of freshly harvested and stored Bacopa floribunda leaves: HPLC phenolic fingerprinting, antioxidant and cholinergic enzyme inhibition properties. Adv Trad Med. 2023;23:261–271. doi:10.1007/s13596-021-00626-y
  • Ishola IO, Afolayan GO, Popoola TD, et al. Protective effect of ethanolic leaf extract of Bacopa floribunda (r.br.) Wettst on scopolamine-induced memory impairment in rodents: a behavioural and biochemical study. West Afr J Pharmacol Drug Res. 2015;30:1–9.
  • Oyeleke MB, Oni HT, Arokoyo OL, et al. Therapeutic effects of crude extracts of Bacopa floribunda on beta-amyloid 1-42-induced Alzheimer’s disease via suppression of dyslipidemia, systemic inflammation and oxidative stress in male Wistar rats. Heliyon. 2022;8(4):e09255. doi:10.1016/j.heliyon.2022.e09255
  • Oyeleke MB, Owoyele BV. Saponins and flavonoids from Bacopa floribunda plant extract exhibit antioxidant and anti-inflammatory effects on amyloid beta 1-42-induced Alzheimer’s disease in BALB/c mice. J Ethnopharmacol. 2022;288:114997. doi:10.1016/j.jep.2022.114997
  • Adetuyi FO, Akintimehin ES, Karigidi KO. Toxicological assessments of aqueous extract of UV-C irradiated Bacopa floribunda leaves in healthy male albino rat. Vegetos. 2023:1–10. doi:10.1007/s42535-023-00616-2
  • Ojo OA, Ojo AB, Ajiboye BO, et al. Chromatographic fingerprint analysis, antioxidant properties, and inhibition of cholinergic enzymes (acetylcholinesterase and butyrylcholinesterase) of phenolic extracts from Irvingia gabonensis (AubryLecomte ex O’Rorke) Baill bark. J Basic Clinl Physiol Pharmacol. 2018a;29(2):217–224. doi:10.1515/jbcpp-2017-0063
  • Kim DO, Chun OK, Kim YJ, et al. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J Agric Food Chem. 2003;516:509–6515.
  • Park Y-S, Jung S-T, Kang S-G, et al. Antioxidants and proteins in ethylene-treated kiwifruits. Food Chem. 2008;107:640–648. doi:10.1016/j.foodchem.2007.08.070
  • Oyaizu M. Studies on products of browning reactions: antioxidant activities of products of browning reaction prepared from glucose amine. Jpn J Nutr. 1986;44:307–315. doi:10.5264/eiyogakuzashi.44.307
  • Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorisation assay. Free Rad Biol Med. 1999;26(9–10):1231–1237. doi:10.1016/S0891-5849(98)00315-3
  • Gyamfi MA, Yonamine M, Aniya Y. Free radical scavenging action of medicinal herbs from Ghana: thonningia sanguine on experimentally induced liver injuries. Gen Pharmacol. 1999;32(6):661–667. doi:10.1016/S0306-3623(98)00238-9
  • Panda BN, Raj AB, Shrivastava NR, et al. The evaluation of nitric oxide scavenging activity of Acalypha indica Linn root. Asian J Res Chem. 2009;2(2):148–150.
  • Perry N, Houghton PJ, Theobold A, et al. In vitro inhibition of human erythrocyte acetylcholinesterase by Salvia lavandulae folia essential oil and constituent terpenes. J Pharm Pharmacol. 2000;52:895–902. doi:10.1211/0022357001774598
  • Adetuyi FO, Karigidi KO, Akintimehin ES, et al. Antioxidant properties of Ageratum conyzoides L. Asteraceae leaves. Bangladesh J Sci Ind Res. 2018;53(4):265–276. doi:10.3329/bjsir.v53i4.39190
  • Ojo J, Mouzon B. Chronic repetitive mild traumatic brain injury results in reduced cerebral blood flow, axonal injury, gliosis, and increased T-tau and tau Oligomers. J Neuropathol Exp Neurol. 2016;75(7):636–655. doi:10.1093/jnen/nlw035
  • Bradford MM. A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Ellman GL, Courtney KD, Andres V, et al. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7(2):88–95. doi:10.1016/0006-2952(61)90145-9
  • Farombi EO, Tahnteng JG, Agboola AO, et al. Chemoprevention of 2-acetylaminofluorene-induced hepatotoxicity and lipid peroxidation in rats by kolaviron-a Garcinia kola seed extract. Food Chem Toxicol. 2000;38:535–541. doi:10.1016/S0278-6915(00)00039-9
  • Green LC, Wagner DA, Glogowski J, et al. Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal Biochem. 1982;126:131–138. doi:10.1016/0003-2697(82)90118-X
  • Jollow DJ, Mitchell JR, Zampaglione N, et al. Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3,4 bromobenzene oxide as the hepatotoxic metabolite. Pharmacol. 1974;11:151–169. doi:10.1159/000136485
  • Rotruck JT, Pope AL, Ganther HE, et al. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179:588–590. doi:10.1126/science.179.4073.588
  • Misra HP, Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–3175. doi:10.1016/S0021-9258(19)45228-9
  • Clairborne A. Catalase activity. In: Greewald AR, editor. Handbook of methods for oxygen radical research. Boca Raton, FL: CRC Press; 1995. p. 237–242.
  • Oboh G, Adebayo AA, Ademosun AO. HPLC phenolic fingerprinting, antioxidant and anti-phosphodiesterase-5 properties of Rauwolfia vomitoria extract. J Basic Clin Physio Pharm. 2019;30(5):1–6. doi:10.1515/jbcpp-2019-0059
  • Papoutsis K, Quan V, Pristijono VP, et al. Enhancing the total phenolic content and antioxidants of lemon pomace aqueous extracts by applying UV-C irradiation to the dried powder. Foods. 2016;5(3):55. doi:10.3390/foods5030055
  • Perkins-Veazie P, Collins JK, Howard L. Blueberry fruit response to postharvest application of ultraviolet radiation. Posth. Biol. Technol. 2008;47(3):280–285. doi:10.1016/j.postharvbio.2007.08.002
  • Karigidi KO, Akintimehin ES, Omoboyowa DA, et al. Phytochemical profiling and antioxidant activities of Monodora myristica and Dennettia tripetala against lipid peroxidation in rat heart. Acta Pharm. Sci. 2022;60(1):49–63. doi:10.23893/1307-2080.APS.6004
  • Howes MJ, Perry NS, Houghton PJ. Plants with traditional uses and activities, relevant to the management of Alzheimer’s disease and other cognitive disorders. Phytother Res. 2003;17:1–18. doi:10.1002/ptr.1280
  • Adefegha SA, Oboh G. Antioxidant and inhibitory properties of Clerodendrum volubile leaf extracts on key enzymes relevant to non-insulin dependent diabetes mellitus and hypertension. J Taibah Uni Sci. 2016;10:521–533. doi:10.1016/j.jtusci.2015.10.008
  • Karigidi KO, Olaiya CO. In vitro antidiabetic, antioxidant and antilipid peroxidative activities of corn steep liquor extracts of Curculigo pilosa and its solvent fractions. J Herbs Spic Med Plants. 2019;25(4):377–388. doi:10.1080/10496475.2019.1635549
  • Wyszkowska J, Jankowska M, Gas P. Electromagnetic fields and neurodegenerative diseases. Przegląd Elektrotechniczny. 2019;1:129–133.
  • Srivastava A, Srivastava P, Pandey A, et al. Phytomedicine: a potential alternative medicine in controlling neurological disorders. In: New look to phytomedicine: advancement in herbal products as novel drug lead. Amsterdam, Netherlands: Elsevier; 2019:625–655.
  • Olaiya CO, Karigidi KO, Ogunleye AB, et al. Possible enhancement of nutrients and antioxidant capacity of two tropical fruits by UV radiation treatment. Adv Life Sci Technol. 2016;46(1):80–85.
  • Shabani S, Mirshekar MA. Diosmin is neuroprotective in a rat model of scopolamine-induced cognitive impairment. Biomed Pharmacother. 2018;108:1376–1383. doi:10.1016/j.biopha.2018.09.127
  • Yadang SAF, Nguezeye Y, Kom CW, et al. Scopolamine-induced memory impairment in mice: neuroprotective effects of Carissa edulis (Forssk.) Valh (Apocynaceae) aqueous extract. Int J Alzheimer’s Dis. 2020;Article ID 6372059:10. doi:10.1155/2020/6372059
  • Schneider P, Ho Y-J, Spanagel R, et al. A novel elevated plus-maze procedure to avoid the one-trial tolerance problem. Front Behav Neurosci. 2011;5:43. doi:10.3389/fnbeh.2011.00043
  • Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007;2(2):322–328. doi:10.1038/nprot.2007.44
  • Aydin E, Hritcu L, Dogan G, et al. The effects of inhaled Pimpinella peregrina essential oil on scopolamine-induced memory impairment, anxiety, and depression in laboratory rats. Mol Neurobiol. 2016;53:6557–6567. doi:10.1007/s12035-016-9693-9
  • Pawlak CR, Schwarting RK. Object preference and nicotine consumption in rats with high vs. low rearing activity in a novel open field. Pharmacol Biochem Behav. 2002;73:679–687. doi:10.1016/S0091-3057(02)00852-3
  • Wang H, Zhang H. Reconsideration of anticholinesterase therapeutic strategies against Alzheimer’s disease. Acs Chem Neurosci. 2019;10:852–862. doi:10.1021/acschemneuro.8b00391
  • Tang KS. The cellular and molecular processes associated with scopolamine-induced memory deficit: a model of Alzheimer's biomarkers. Life Sci. 2019;233:116695. doi:10.1016/j.lfs.2019.116695
  • Serrano F, Klann E. Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev. 2004;3:431–443. doi:10.1016/j.arr.2004.05.002
  • Aksoz E, Gocmez SS, Sahin Tugce D, et al. The protective effect of metformin in scopolamine-induced learning and memory impairment in rats. Pharmacol Rep. 2019;71:818–825. doi:10.1016/j.pharep.2019.04.015