106
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of entropy generation in power law fluid-filled bulging enclosures: effects of flow and heat transfer

, , , , &
Article: 2346295 | Received 28 Oct 2023, Accepted 18 Apr 2024, Published online: 02 May 2024

References

  • Ozoe H, Churchill SW. Hydrodynamic stability and natural convection in Ostwald-de Waele and Ellis fluids: the development of a numerical solution. AIChE J. 1972;18(6):1196–1207. doi:10.1002/aic.690180617
  • Kaddiri M, Naïmi M, Raji A, et al. Rayleigh-Bénard convection of non-Newtonian power-law fluids with temperature-dependent viscosity. Int Sch Res Notices. 2012;2012:10. Article ID 614712, doi:10.5402/2012/614712
  • Kim GB, Hyun JM, Kwak HS. Transient buoyant convection of a power-law non-Newtonian fluid in an enclosure. Int J Heat Mass Transf. 2003;46(19):3605–3617. doi:10.1016/S0017-9310(03)00149-2
  • Abderrahmane H, Brahim N, Abdelfatah B, et al. Laminar natural convection of power-law fluid in a differentially heated inclined square cavity. Ann Chim Sci Mater. 2018;41(3-4):261–280. doi:10.3166/acsm.41.261-280
  • Ternik P, Rudolf R. Laminar natural convection of non-Newtonian nanofluids in a square enclosure with differentially heated side walls. Int J Simul Model. 2013;12(1):5–16. doi:10.2507/IJSIMM12(1)1.215
  • Turkyilmazoglu M. Driven flow motion by a dually moving lid of a square cavity. Eur J Mech B Fluids. 2022;94:17–28. doi:10.1016/j.euromechflu.2022.02.005
  • Sojoudi A, Saha SC, Gu Y, et al. Steady natural convection of non-Newtonian power-law fluid in a trapezoidal enclosure. Adv Mech Eng. 2013;5:653108. doi:10.1155/2013/653108
  • Turan O, Sachdeva A, Chakraborty N, et al. Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures. J Non-Newtonian Fluid Mech. 2011;166(17-18):1049–1063. doi:10.1016/j.jnnfm.2011.06.003
  • Khezzar L, Siginer D, Vinogradov I. Natural convection of power law fluids in inclined cavities. Int J Therm Sci. 2012;53:8–17. doi:10.1016/j.ijthermalsci.2011.10.020
  • Wakif A, Shah NA. Hydrothermal and mass impacts of azimuthal and transverse components of Lorentz forces on reacting Von Kármán nanofluid flows considering zero mass flux and convective heating conditions. Wave Random Complex Media. 2022: 1–22. doi:10.1080/17455030.2022.2136413
  • Ananth Subray PV, Hanumagowda BN, Varma SVK, et al. Dynamics of heat transfer analysis of convective-radiative fins with variable thermal conductivity and heat generation: differential transformation method. Mathematics. 2022;10(20):3814. doi:10.3390/math10203814
  • Sandeep N, Sulochana C. Momentum and heat transfer behaviour of Jeffrey, Maxwell and Oldroyd-B nanofluids past a stretching surface with non-uniform heat source/sink. Ain Shams Eng J. 2018;9(4):517–524. doi:10.1016/j.asej.2016.02.008
  • Ramesh G, Madhukesh J, Shah NA, et al. Flow of hybrid CNTs past a rotating sphere subjected to thermal radiation and thermophoretic particle deposition. Alexandria Eng J. 2023;64:969–979. doi:10.1016/j.aej.2022.09.026
  • Bilal S, Khan NZ, Fatima I, et al. RETRACTED: mixed convective heat transfer in a power-law fluid in a square enclosure: higher order finite element solutions. Front Phys. 2023;10:1327. doi:10.3389/fphy.2022.1079641
  • Mehdizadeh A, Rahmati A, Sheikhzadeh G. Simulation and comparison of non-Newtonian fluid models using LBM in a cavity. J Heat Mass Transfer Res. 2021;8(1):115–125.
  • Turkyilmazoglu M, Duraihem FZ. Full solutions to flow and heat transfer from slip-induced microtube shapes. Micromachines (Basel). 2023;14(4):894. doi:10.3390/mi14040894
  • Alam M, Rahman M, Sattar M. On the effectiveness of viscous dissipation and Joule heating on steady Magnetohydrodynamic heat and mass transfer flow over an inclined radiate isothermal permeable surface in the presence of thermophoresis. J Commun Nonlinear Sci Numer Simul. 2009;14(5):2132–2143. doi:10.1016/j.cnsns.2008.06.008
  • Turkyilmazoglu M, Duraihem FZ. Fully developed flow in a long triangular channel under an applied magnetic field. J Magn Magn Mater. 2023;578:170803. doi:10.1016/j.jmmm.2023.170803
  • Kandasamy R, Dharmalingam R, Prabhu KS. Thermal and solutal stratification on MHD nanofluid flow over a porous vertical plate. Alexandria Eng J. 2018;57(1):121–130. doi:10.1016/j.aej.2016.02.029
  • Zain NM, Ismail Z. Numerical solution of magnetohydrodynamics effects on a generalised power law fluid model of blood flow through a bifurcated artery with an overlapping shaped stenosis. PLoS One. 2023;18(2):e0276576.
  • Turkyilmazoglu M. Magnetohydrodynamic moving liquid plug within a microchannel: analytical solutions. J Biomech Eng. 2021;143(1):011012. doi:10.1115/1.4048713
  • Hussain S, Pour M, Jamal M, et al. MHD mixed convection and entropy analysis of non-Newtonian hybrid nanofluid in a novel wavy elbow-shaped cavity with a quarter circle hot block and a rotating cylinder. Exp Tech. 2023;47(1):17–36. doi:10.1007/s40799-022-00549-6
  • Kardgar A. Natural convection and entropy generation of Non-newtonian hybrid Cu-Al2O3/water nanofluid in an inclined partial porous cavity with different local heater positions in the presence of magnetic field. J Heat Mass Transfer Res. 2023;10(2):279–300.
  • Yasin A, Ullah N, Nadeem S, et al. Numerical simulation for mixed convection in a parallelogram enclosure: Magnetohydrodynamic (MHD) and moving wall-undulation effects. Int Commun Heat Mass Transfer. 2022;135:106066. doi:10.1016/j.icheatmasstransfer.2022.106066
  • Gray DD, Giorgini A. The validity of the Boussinesq approximation for liquids and gases. Int J Heat Mass Transfer. 1976;19(5):545–551. doi:10.1016/0017-9310(76)90168-X
  • Bilal S, Khan NZ, Shah IA, et al. Numerical study of natural convection of power law fluid in a square cavity fitted with a uniformly heated T-fin. Mathematics. 2022;10(3):342. doi:10.3390/math10030342
  • Kefayati G. Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (part II: entropy generation). Energy. 2016;107:917–959. doi:10.1016/j.energy.2016.05.044
  • Hussain S, Öztop HF. Impact of inclined magnetic field and power law fluid on double diffusive mixed convection in lid-driven curvilinear cavity. Int Commun Heat Mass Transfer. 2021;127:105549.
  • Kolsi L, Hussain S, Ghachem K, et al. Double diffusive natural convection in a square cavity filled with a porous media and a power law fluid separated by a wavy interface. Mathematics. 2022;10(7):1060. doi:10.3390/math10071060
  • Baranovskii ES. On flows of Bingham-type fluids with threshold slippage. Adv Math Phys. 2017;2017:6. Article ID 7548328. doi:10.1155/2017/7548328
  • Domairry G, Hatami M. Squeezing Cu – water nanofluid flow analysis between parallel plates by DTM-Padé Method. J Mol Liq. 2014;193:37–44.
  • Ahmadi A, Zahmatkesh A, Hatami M, et al. A comprehensive analysis of the flow and heat transfer for a nanofluid over an unsteady stretching flat plate. Powder Technol. 2014;258:125–133. doi:10.1016/j.powtec.2014.03.021
  • Roy S, Basak T. Finite element analysis of natural convection flows in a square cavity with non-uniformly heated wall(s). Int J Eng Sci. 2005;43(8-9):668–680. doi:10.1016/j.ijengsci.2005.01.002