174
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mixed convection of ferrohydrodynamics magnetized hybrid ferrofluid on a slip-permeable stretching sheet

, , &
Article: 2347057 | Received 26 Feb 2024, Accepted 19 Apr 2024, Published online: 08 May 2024

References

  • Janna WS. Engineering heat transfer. CRC Press; 2018. doi:10.1201/9781439883143
  • Struchtrup H. Thermodynamics and energy conversion. Springer; 2014. doi:10.1007/978-3-662-43715-5
  • Afridi MI, Qasim M, Khan I, et al. Entropy generation in magnetohydrodynamic mixed convection flow over an inclined stretching sheet. Entropy. 2017;19(1):1–11. doi:10.3390/e19010010
  • Mahdy A. Unsteady mixed convection boundary layer flow and heat transfer of nanofluids due to stretching sheet. Nucl Eng Des. 2012;249:248–255. doi:10.1016/j.nucengdes.2012.03.025
  • Olanrewaju P. Effects of internal heat generation on hydromagnetic non-darcy flow and heat transfer over a stretching sheet in the presence of thermal radiation and ohmic dissipation. World Appl Sci J. 2012;16:37–45.
  • Daniel YS, Aziz ZA, Ismail Z, et al. Slip role for unsteady MHD mixed convection of nanofluid over stretching sheet with thermal radiation and electric field. Indian J Phys. 2020 ;94(2):195–207. doi:10.1007/s12648-019-01474-y
  • Ishak A, Nazar R, Pop I. Unsteady mixed convection boundary layer flow due to a stretching vertical surface. Arab J Sci Eng. 2006;31(2):165–182.
  • Chaudhary S, Choudhary MK. Partial slip and thermal radiation effects on hydromagnetic flow over an exponentially stretching surface with suction or blowing. Therm Sci. 2018;22(2):797–808. doi:10.2298/TSCI160127150C
  • Gupta P, Gupta A. Heat and mass transfer on a stretching sheet with suction or blowing. Can J Chem Eng. 1977;55(6):744–746. doi:10.1002/cjce.5450550619
  • Crane LJ. Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik ZAMP. 1970;21:645–647. doi:10.1007/BF01587695
  • Elazem NYA. New exact and numerical solutions for the effect of suction or injection on flow of nanofluids past a stretching sheet. Nonlinear Eng. 2019;8(1):172–178. doi:10.1515/nleng-2017-0059
  • Ibrahim W, Shankar B. MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions. Comput Fluids. 2013;75:1–10. doi:10.1016/j.compfluid.2013.01.014
  • Jha BK, Azeez LA, Oni MO. Unsteady hydromagnetic-free convection flow with suction/injection. J Taibah Univ Sci. 2019;13(1):136–145. doi:10.1080/16583655.2018.1545624
  • Naramgari S, Sulochana C. MHD flow over a permeable stretching/shrinking sheet of a nanofluid with suction/injection. Alexandria Eng J. 2016;55(2):819–827. doi:10.1016/j.aej.2016.02.001
  • Obalalu AM, Wahaab FA, Adebayo LL. Heat transfer in an unsteady vertical porous channel with injection/suction in the presence of heat generation. J Taibah Univ Sci. 2020;14(1):541–548. doi:10.1080/16583655.2020.1748844
  • Kamis NI, Rawi NA, Jiann LY, et al. Thermal characteristics of an unsteady hybrid nano-casson fluid passing through a stretching thin-film with mass transition. Adv Res Fluid Mech Therm Sci. 2023;104(2):36–50. doi:10.37934/arfmts.104.2.3650
  • Guled C, Tawade J, Kumam P, et al. The heat transfer effects of MHD slip flow with suction and injection and radiation over a shrinking sheet by optimal homotopy analysis method. Results Eng. 2023;18:101173–101183. doi:10.1016/j.rineng.2023.101173
  • Maranna T, Mahabaleshwar US, Ravichandra Nayakar SN, et al. An influence of radiation and magnetohydrodynamic flow of hybrid nanofluid past a stretching/shrinking sheet with mass transpiration. J Appl Math Mech. 2023;103(12):e202300140–e202300140. doi:10.1002/zamm.202300140
  • Maranna T, Sneha K, Mahabaleshwar U, et al. An impact of heat and mass transpiration on magnetohydrodynamic viscoelastic fluid past a permeable stretching/shrinking sheet. Heat Transfer. 2023;52(3):2231–2248. doi:10.1002/htj.22782
  • Kamis NI, Basir MFM, Shafie S, et al. Suction effect on an unsteady casson hybrid nanofluid film past a stretching sheet with heat transfer analysis. IOP Conf Ser: Mater Sci Eng. 2021;1078(1):012019–012029. IOP Publishing.
  • Siddiqui AA, Turkyilmazoglu M. Slit flow and thermal analysis of micropolar fluids in a symmetric channel with dynamic and permeable. Int Commun Heat Mass Transfer. 2022;132:105844–105857. doi:10.1016/j.icheatmasstransfer.2021.105844
  • Madhu M, Kishan N, Chamkha AJ. Unsteady flow of a Maxwell nanofluid over a stretching surface in the presence of magnetohydrodynamic and thermal radiation effects. Propuls Power Res. 2017;6(1):31–40. doi:10.1016/j.jppr.2017.01.002
  • Zhang W-M, Meng G, Wei X. A review on slip models for gas microflows. Microfluid Nanofluid. 2012;13:845–882. doi:10.1007/s10404-012-1012-9
  • Navier C. Mémoire sur les lois du mouvement des fluides. éditeur inconnu; 1822.
  • Andersson HI. Slip flow past a stretching surface. Acta Mech. 2002;158(1-2):121–125. doi:10.1007/BF01463174
  • Wang C. Flow due to a stretching boundary with partial slip—an exact solution of the navier–stokes equations. Chem Eng Sci. 2002;57(17):3745–3747. doi:10.1016/S0009-2509(02)00267-1
  • Thompson PA. Troian SM. A general boundary condition for liquid flow at solid surfaces. Nature. 1997;389(6649):360–362. doi:10.1038/38686
  • Yazdi M, Abdullah S, Hashim I, et al. Slip MHD liquid flow and heat transfer over nonlinear permeable stretching surface with chemical reaction. Int J Heat Mass Transfer. 2011;54(15-16):3214–3225. doi:10.1016/j.ijheatmasstransfer.2011.04.009
  • Sharma R, Ishak A, Pop I. Partial slip flow and heat transfer over a stretching sheet in a nanofluid. Math Probl Eng. 2013;2013:724547–724555. doi:10.1155/2013/724547
  • Turkyilmazoglu M. Heat and mass transfer of MHD second order slip flow. Comput Fluids. 2013;71:426–434. doi:10.1016/j.compfluid.2012.11.011
  • Zeeshan A, Majeed A, Ellahi R, et al. Mixed convection flow and heat transfer in ferromagnetic fluid over a stretching sheet with partial slip effects. Therm Sci. 2018;22–26(Part A):2515–2526. doi:10.2298/TSCI160610268Z
  • Malkin AY, Patlazhan SA. Wall slip for complex liquids – phenomenon and its causes. Adv Colloid Interface Sci. 2018;257:42–57. doi:10.1016/j.cis.2018.05.008
  • Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab.(ANL), Argonne, IL (United States); 1995.
  • Mahian O, Kolsi L, Amani M, et al. Recent advances in modeling and simulation of nanofluid flows-part I: fundamentals and theory. Phys Rep. 2019;790:1–48. doi:10.1016/j.physrep.2018.11.004
  • Maxwell JC. A treatise on electricity and magnetism. Vol. 1. Clarendon Press; 1873.
  • Suneetha S, Subbarayudu K, Bala Anki Reddy P. Hybrid nanofluids development and benefits: A comprehensive review. J Therm Eng. 2022;8(3):445–455. doi:10.18186/thermal.1117455
  • Ali HM. Hybrid nanofluids for convection heat transfer. Academic Press; 2020.
  • Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recent research, development and applications. Renewable Sustainable Energy Rev. 2015;43:164–177. doi:10.1016/j.rser.2014.11.023
  • Philip J, Shima P, Raj B. Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures. Appl Phys Lett. 2007;91(20):203108–203112. doi:10.1063/1.2812699
  • Philip J. Magnetic nanofluids: recent advances, applications, challenges, and future directions. Adv Colloid Interface Sci. 2022:102810–102854. doi:10.1016/j.cis.2022.102810
  • Gui NGJ, Stanley C, Nguyen N-T, et al. Ferrofluids for heat transfer enhancement under an external magnetic field. Int J Heat Mass Transfer. 2018;123:110–121. doi:10.1016/j.ijheatmasstransfer.2018.02.100
  • Raj K, Boulton R. Ferrofluids – properties and applications. Mater Des. 1987;8(4):233–236. doi:10.1016/0261-3069(87)90139-7
  • Alsoy-Akgün N. Effect of an uniform magnetic field on unsteady natural convection of nanofluid. J Taibah Univ Sci. 2019;13(1):1073–1086. doi:10.1080/16583655.2019.1682342
  • Kabeel AE, El-Said EMS, Dafea SA. A review of magnetic field effects on flow and heat transfer in liquids: present status and future potential for studies and applications. Renewable Sustainable Energy Rev. 2015;45:830–837. doi:10.1016/j.rser.2015.02.029
  • Rosensweig R. Ferrohydrodynamics Cambridge Univ. Press, Cambridge. 1985:344.
  • Iftikhar B, Siddiqui MA, Javed T. Dynamics of magnetohydrodynamic and ferrohydrodynamic natural convection flow of ferrofluid inside an enclosure under non-uniform magnetic field. Alexandria Eng J. 2023;66:523–536. doi:10.1016/j.aej.2022.11.011
  • Chao D, Zhu C, Yang P, et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun. 2016;7(1):12122–12130. doi:10.1038/ncomms12122
  • Raj K, Moskowitz B, Casciari R. Advances in ferrofluid technology. J Magn Magn Mater. 1995;149(1-2):174–180. doi:10.1016/0304-8853(95)00365-7
  • Moradiya M, Ladani A, Ladani J, et al. New way to treat cancer: magnetic nanoparticle based hyperthermia. J Chem Sci Eng. 2019;2(1):58. À60.
  • Vijayan PP, Radhamany AS, Beeran AE, et al. Magnetic nanoparticles-based coatings. In: Nanotechnology in the automotive industry. Elsevier; 2022. p. 317–343. doi:10.1016/B978-0-323-90524-4.00016-5
  • Zhou K, Zhou X, Liu J, et al. Application of magnetic nanoparticles in petroleum industry: a review. J Pet Sci Eng. 2020;188:106943–106970. doi:10.1016/j.petrol.2020.106943
  • Neuringer JL, Rosensweig RE. Ferrohydrodynamics. Phys Fluids. 1964;7(12):1927–1937. doi:10.1063/1.1711103
  • Gowda RP, Kumar RN, Prasannakumara B, et al. Exploring magnetic dipole contribution on ferromagnetic nanofluid flow over a stretching sheet: An application of stefan blowing. J Mol Liq. 2021;335:116215–116223. doi:10.1016/j.molliq.2021.116215
  • Andersson H, Valnes O. Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole. Acta Mech. 1998;128(1-2):39–47. doi:10.1007/BF01463158
  • Seleznyova K, Strugatsky M, Kliava J. Modelling the magnetic dipole. Eur J Phys. 2016;37(2):025203–025218. doi:10.1088/0143-0807/37/2/025203
  • Davidson PA. Introduction to magnetohydrodynamics. Vol. 55. Cambridge University Press; 2016.
  • Muhammad N, Nadeem S, Mustafa M. Analysis of ferrite nanoparticles in the flow of ferromagnetic nanofluid. PLoS One. 2018;13(1):e0188460–e0188483. doi:10.1371/journal.pone.0188460
  • Padervand M, Vossoughi M, Yousefi H, et al. An experimental and theoretical study on the structure and photoactivity of XFe 2 O 4 (X = Mn, Fe, Ni. Co, and Zn) structures. Russ J Phys Chem A. 2014;88:2451–2461. doi:10.1134/S0036024414130184
  • Dinarvand M, Abolhasani M, Hormozi F, et al. Experimental investigation and performance comparison of Fe3O4/water and CoFe2O4/water ferrofluids in presence of a magnetic field in a cooling system. J Taiwan Inst Chem Eng. 2023: 104927–104936. doi:10.1016/j.jtice.2023.104927
  • Amiri S, Shokrollahi H. The role of cobalt ferrite magnetic nanoparticles in medical science. Mater Sci Eng C. 2013;33(1):1–8. doi:10.1016/j.msec.2012.09.003
  • Kumar K A, Sandeep N, Sugunamma V, et al. Effect of irregular heat source/sink on the radiative thin film flow of MHD hybrid ferrofluid. J Therm Anal Calorim. 2020;139:2145–2153. doi:10.1007/s10973-019-08628-4
  • Anwar T, Kumam P, Thounthong P. Fractional modeling and exact solutions to analyze thermal performance of Fe3O4-MoS2-water hybrid nanofluid flow over an inclined surface with ramped heating and ramped boundary motion. IEEE Access. 2021;9:12389–12404. doi:10.1109/ACCESS.2021.3051740
  • Tahir H, Khan U, Din A, et al. Hybridized two phase ferromagnetic nanofluid with NiZnFe2O4 and MnZnFe2O4. Ain Shams Eng J. 2021;12(3):3063–3070. doi:10.1016/j.asej.2020.10.026
  • Khan M I, Qayyum S, Shah F, et al. Marangoni convective flow of hybrid nanofluid (MnZnFe2O4-NiZnFe2O4-H2O) with darcy forchheimer medium. Ain Shams Eng J. 2021;12(4):3931–3938. doi:10.1016/j.asej.2021.01.028
  • Yang J, Abdelmalek Z, Muhammad N, et al. Hydrodynamics and ferrite nanoparticles in hybrid nanofluid. Int Commun Heat Mass Transfer. 2020;118:104927–104936. doi:10.1016/j.icheatmasstransfer.2020.104883
  • Zainodin S, Jamaludin A, Nazar R, et al. Impact of heat source on mixed convection hybrid ferrofluid flow across a shrinking inclined plate subject to convective boundary conditions. Alexandria Eng J. 2024;87:662–681. doi:10.1016/j.aej.2023.12.057
  • Mansourian M, Dinarvand S, Pop I. Aqua cobalt ferrite/Mn–Zn ferrite hybrid nanofluid flow over a nonlinearly stretching permeable sheet in a porous medium. J Nanofluids. 2022;11(3):383–391. doi:10.1166/jon.2022.1841
  • Zhao T-H, Khan MI, Qayyum S, et al. Comparative study of ferromagnetic hybrid (manganese zinc ferrite, nickle zinc ferrite) nanofluids with velocity slip and convective conditions. Phys Scr. 2021;96(7):075203–075217. doi:10.1088/1402-4896/abf26b
  • Kumar TS. Hybrid nanofluid slip flow and heat transfer over a stretching surface. Partial Differ Equ Appl Math. 2021;4:100070–100078. doi:10.1016/j.padiff.2021.100070
  • Ezhil K, Thavada SK, Ramakrishna SB. MHD slip flow and heat transfer of Cu-Fe3O4/ethylene glycol-based hybrid nanofluid over a stretching surface. Biointerface Res Appl Chem. 2021;11(4):11956–11968. doi:10.33263/BRIAC114.1195611968
  • Zainodin S, Jamaludin A, Nazar R, et al. Effects of higher order chemical reaction and slip conditions on mixed convection hybrid ferrofluid flow in a darcy porous medium. Alexandria Eng J. 2023;68:111–126. doi:10.1016/j.aej.2023.01.011
  • Manzoor U, Imran M, Muhammad T, et al. Heat transfer improvement in hybrid nanofluid flow over a moving sheet with magnetic dipole. Waves Random Complex Media. 2021: 1–15. doi:10.1080/17455030.2021.1991602
  • Cebeci T, Bradshaw P. Physical and computational aspects of convective heat transfer. New York: Springer; 1988. (ed. s, editor.). doi:10.1007/978-1-4612-3918-5
  • Shoghl S N, Jamali J, Keshavarz Moraveji M. Electrical conductivity, viscosity, and density of different nanofluids: An experimental study. Exp Therm Fluid Sci. 2016;74:339–346. doi:10.1016/j.expthermflusci.2016.01.004
  • Çolak AB, Yildiz O, Bayrak M, et al. Experimental study on the specific heat capacity measurement of water-based al2o3-cu hybrid nanofluid by using differential thermal analysis method. Curr Nanosci. 2020;16(6):912–928. doi:10.2174/1573413715666191118105331
  • Colak AB. Experimental study for thermal conductivity of water-based zirconium oxide nanofluid: developing optimal artificial neural network and proposing new correlation. Int J Energy Res. 2021;45(2):2912–2930. doi:10.1002/er.5988
  • Tiwari RK, Das MK. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transfer. 2007;50(9-10):2002–2018. doi:10.1016/j.ijheatmasstransfer.2006.09.034
  • Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571–571. doi:10.1063/1.1700493
  • Maxwell JC. Electricity and magnetism. Vol. 2. Dover New York; 1954.
  • Neuringer JL. Some viscous flows of a saturated ferro-fluid under the combined influence of thermal and magnetic field gradients. Int J Nonlinear Mech. 1966;1(2):123–137. doi:10.1016/0020-7462(66)90025-4
  • Chen T, Mucoglu A. Analysis of mixed forced and free convection about a sphere. Int J Heat Mass Transfer. 1977;20(8):867–875. doi:10.1016/0017-9310(77)90116-8
  • Kamis NI, Jiann LY, Shafie S, et al. Numerical simulation of convection hybrid ferrofluid with magnetic dipole effect on an inclined stretching sheet. Alexandria Eng J. 2023;76:19–33. doi:10.1016/j.aej.2023.06.030
  • Kamis NI, Jiann LY, Shafie S, et al. Comparative analysis of Fe3O4/CoFe2O4 and NiZnFe2O4/MnZnFe2O4 hybrid ferro-nanofluids flow under magnetic dipole effect over a slip stretching sheet. Case Stud Therm Eng. 2023;51:103580–103596. doi:10.1016/j.csite.2023.103580
  • Karniadakis G, Beskok A, Aluru N. Microflows and nanoflows: fundamentals and simulation. Vol. 29. Springer Science & Business Media; 2006.
  • Manjunatha S, Puneeth V, Gireesha B, et al. Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet. J Appl Comput Mech. 2022;8(4):1279–1286.
  • Idowu AS, Akolade MT, Abubakar JU, et al. MHD free convective heat and mass transfer flow of dissipative casson fluid with variable viscosity and thermal conductivity effects. J Taibah Univ Sci. 2020;14(1):851–862. doi:10.1080/16583655.2020.1781431