144
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Unsteady MHD dusty fluid flow over a cone in the vicinity of porous medium: a numerical study

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2348241 | Received 29 Nov 2023, Accepted 23 Apr 2024, Published online: 03 May 2024

References

  • Sproull WT. Viscosity of dusty gases. Nature. 1961;190:976–978. doi: 10.1038/190976a0
  • Siddiqa S, Hossain MA, Saha SC. Two-phase natural convection flow of a dusty fluid. Int J Numer Methods Heat Fluid Flow. 2015;25:1542–1556. doi: 10.1108/HFF-09-2014-0278
  • Turkyilmazoglu M. Bödewadt flow and heat transfer of dusty fluid with Navier slip. Arch Mech. 2022;74(2-3):157–172.
  • Dey D, Makinde OD, Chutia B. Hydromagnetic flow of dusty fluid with heat and mass transfer past a stretching curved surface in a porous medium. Lat Am Appl Res. 2022;52:201–206.
  • Ramesh G, Gireesha B, Gorla RSR. Boundary layer flow past a stretching sheet with fluid-particle suspension and convective boundary condition. Heat Mass Transf. 2015;51:1061–1066. doi: 10.1007/s00231-014-1477-z
  • Jagannadham MN, Rath B, Dash D. Numerical solution of fluid and particle phase on velocity of heat with effect of magnetic field in incompressible dusty fluid. Dogo Rangsang Research Journal. 2022;12(10):120–127.
  • Reddimalla N, Ramana Murthy J, Radha Krishna Murthy, et al. Effect of Magnetic Field on Unsteady Flow of Dusty Fluid Due to Constant Pressure Gradient Through a Circular Cylinder: An Analytical Treatment. In Recent Advances in Applied Mathematics and Applications to the Dynamics of Fluid Flows: 5th International Conference on Applications of Fluid Dynamics (ICAFD) 2020, Singapore: Springer Nature Singapore. 2022;195–202.
  • Kumar S. Hydro Magnetic Mixed Convection And Mass Transfer Flow of a Viscoelastic Fluid through a Porous Medium Confined in a Vertical Channel: a Comparison between Crank-Nicolson Method and Laplace Transform Technique. International Journal Of Multidisciplinary Research In Science, Engineering and Technology. 2021;4(3):418–425.
  • Platzman RL. Cosmical electrodynamics. H. Alfven. New York: Oxford Univ. Press; 1950; p. 237. 5.00. Science. 1950;112:507. doi: 10.1126/science.112.2913.507.b
  • Hanif H, Lund LA, Shafie S. Dynamics of ag–ceTiO2/H2O between two coaxial cylinders: a computational approach. Eur Phys J Plus. 2023;138:1–10. doi: 10.1140/epjp/s13360-022-03580-z
  • Hanif H, Shafie S. Impact of Al2O3 in electrically conducting mineral oil-based Maxwell nanofluid: application to the petroleum industry. Fractal Fract. 2022;6:180. doi: 10.3390/fractalfract6040180
  • Hanif H, Shafie S. Application of Cattaneo heat flux to Maxwell hybrid nanofluid model: a numerical approach. Eur Phys J Plus. 2022;137:989. doi: 10.1140/epjp/s13360-022-03209-1
  • Saqib M, Hanif H, Abdeljawad T, et al. Heat transfer in MHD flow of Maxwell fluid via fractional Cattaneo–Friedrich model: a finite difference approach. Comput Mater Contin. 2020;65:1959–1973.
  • Abbas W, Khaled O, Beshir S, et al. Analysis of chemical, Ion Slip, and thermal radiation effects on an Unsteady MHD Dusty fluid flow with heat and mass transfer through a Porous Media between parallel plates. 2022.
  • Hanif H, Khan I, Shafie S. MHD natural convection in cadmium telluride nanofluid over a vertical cone embedded in a porous medium. Phys Scr. 2019;94:125208. doi: 10.1088/1402-4896/ab36e1
  • Hanif H, Khan I, Shafie S, et al. Heat transfer in cadmium telluride-water nanofluid over a vertical cone under the effects of magnetic field inside porous medium. Processes. 2019;8:7. doi: 10.3390/pr8010007
  • Hanif H, Shafie S, Jagun ZT. Maximizing thermal efficiency of a cavity using hybrid nanofluid. J Clean Prod. 2024;441:141089. doi: 10.1016/j.jclepro.2024.141089
  • Reyaz R, Mohamad AQ, Lim YJ, et al. Analytical solution for impact of Caputo–Fabrizio fractional derivative on MHD casson fluid with thermal radiation and chemical reaction effects. Fractal Fract. 2022;6:38. doi: 10.3390/fractalfract6010038
  • Noor NAM, Admon MA, Shafie S. Unsteady MHD squeezing flow of casson fluid over horizontal channel in presence of chemical reaction. J Adv Res Fluid Mech Therm Sci. 2022;92:49–60. doi: 10.37934/arfmts
  • Hanif H, Shafie S, Jagun Z. Maximizing heat transfer and minimizing entropy generation in concentric cylinders with CuO−MgO−TiO2 nanoparticles. Chin J Phys. 2023;89:493–503.
  • Merk H, Prins J. Thermal convection in laminar boundary layers II. Appl Sci Res Sect A. 1954;4:195–206. doi: 10.1007/BF03184951
  • Awad F, Sibanda P, Motsa SS, et al. Convection from an inverted cone in a porous medium with cross-diffusion effects. Comput Math Appl. 2011;61:1431–1441. doi: 10.1016/j.camwa.2011.01.015
  • Makanda G, Makinde O, Sibanda P, et al. Natural convection of viscoelastic fluid from a cone embedded in a porous medium with viscous dissipation. Math Probl Eng. 2013;2013:1–11. doi: 10.1155/2013/934712
  • Jasmine Benazir A, Sivaraj R, Makinde OD. Unsteady magnetohydrodynamic casson fluid flow over a vertical cone and flat plate with non-uniform heat source/sink. Int J Eng Res Afr. 2016;21:69–83. doi: 10.4028/www.scientific.net/JERA.21
  • Hanif H, Khan A, Rijal Illias M, et al. Significance of Cu−Fe3O4 on fractional Maxwell fluid flow over a cone with Newtonian heating. J Taibah Univ Sci. 2024;18:2285491. doi: 10.1080/16583655.2023.2285491
  • Basha HT, Gunakala SR, Makinde OD, et al. Chemically reacting unsteady flow of nanofluid over a cone and plate with activation energy. Defect and Diffusion Forum. 2018;387:343–351. Switzerland: Trans Tech Publications Ltd.
  • Turkyilmazoglu M. On the fluid flow and heat transfer between a cone and a disk both stationary or rotating. Math Comput Simul. 2020;177:329–340. doi: 10.1016/j.matcom.2020.04.004
  • Ilyas A, Ashraf M, Rashad A. Periodical analysis of convective heat transfer along electrical conducting cone embedded in porous medium. Arab J Sci Eng. 2022;47:8177–8188. doi: 10.1007/s13369-021-06191-5
  • Siddiqa S, Begum N, Hossain M, et al. Two-phase dusty fluid flow along a cone with variable properties. Heat Mass Transf. 2017;53:1517–1525. doi: 10.1007/s00231-016-1918-y
  • Siddiqa S, Begum N, Hossain AM, et al. Numerical solution of contaminated oil along a vertical wavy frustum of a cone. Therm Sci. 2018;22:2933–2942. doi: 10.2298/TSCI160425231S
  • Mahanthesh B, Makinde OD, Gireesha BJ, et al. Two-phase flow of dusty Casson fluid with Cattaneo-Christov heat flux and heat source past a cone, wedge and plate. Defect and Diffusion Forum. 2018;387:625–639. Switzerland: Trans Tech Publications Ltd.
  • Palani G, Kumar EL. Dusty gas flow over a semi-infinite vertical cone. JP Journal of Heat and Mass Transfer. 2021;22(2):201–216. India: Pushpa Publishing House.
  • Turkyilmazoglu M. A note on the induced flow and heat transfer due to a deforming cone rotating in a quiescent fluid. J Heat Transf. 2018;140:124502. doi: 10.1115/1.4041184
  • Turkyilmazoglu M. The flow and heat in the conical region of a rotating cone and an expanding disk. Int J Numer Methods Heat Fluid Flow. 2023;33:2181–2197. doi: 10.1108/HFF-11-2022-0655
  • Berlemont A, Desjonqueres P, Gouesbet G. Particle lagrangian simulation in turbulent flows. Int J Multiph Flow. 1990;16:19–34. doi: 10.1016/0301-9322(90)90034-G
  • Saffman P. On the stability of laminar flow of a dusty gas. J Fluid Mech. 1962;13:120–128. doi: 10.1017/S0022112062000555
  • Hanif H. Cattaneo–Friedrich and Crank–Nicolson analysis of upper-convected Maxwell fluid along a vertical plate. Chaos Solitons Fract. 2021;153:111463. doi: 10.1016/j.chaos.2021.111463
  • Hanif H. A finite difference method to analyze heat and mass transfer in kerosene based γ-oxide nanofluid for cooling applications. Phys Scr. 2021;96:095215. doi: 10.1088/1402-4896/ac098a
  • Hanif H. A computational approach for boundary layer flow and heat transfer of fractional Maxwell fluid. Math Comput Simul. 2022;191:1–13. doi: 10.1016/j.matcom.2021.07.024
  • Blottner F. Finite difference methods of solution of the boundary-layer equations. AIAA J. 1970;8:193–205. doi: 10.2514/3.5642
  • Hanafi H, Hanif H, Shafie S, et al. Unsteady free convection dusty MHD flow with dissipation effect over non-isothermal vertical cone. J Adv Res Fluid Mech Therm Sci. 2024;114:56–68. doi: 10.37934/arfmts
  • Sivaraj R, Kumar BR. Viscoelastic fluid flow over a moving vertical cone and flat plate with variable electric conductivity. Int J Heat Mass Transf. 2013; 61:119–128. doi: 10.1016/j.ijheatmasstransfer.2013.01.060
  • Pullepu B, Ekambavanan K, Chamkha A. Unsteady laminar natural convection from a non-isothermal vertical cone. Nonlinear Anal Model Control. 2007;12:525–540. doi: 10.15388/NA.2007.12.4.14684
  • Pullepu B, Chamkha AJ, Pop I. Unsteady laminar free convection flow past a non-isothermal vertical cone in the presence of a magnetic field. Chem Eng Commun. 2012;199:354–367. doi: 10.1080/00986445.2011.592443
  • Thandapani E, Ragavan A, Palani G. Finite-difference solution of unsteady natural convection flow past a nonisothermal vertical cone under the influence of a magnetic field and thermal radiation. J Appl Mech Tech Phys. 2012;53:408–421. doi: 10.1134/S0021894412030133
  • Hering R, Grosh R. Laminar free convection from a non-isothermal cone. Int J Heat Mass Transf. 1962;5:1059–1068. doi: 10.1016/0017-9310(62)90059-5
  • Sambath P. A Study on Unsteady Natural Convective Flow past a Vertical Cone with Heat and Mass Transfer Effects. 2017.