196
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Innovation, structural inspection for new mixed complexes: DNA binding, biomedical applications and molecular docking approaches

, ORCID Icon, , , , , & show all
Article: 2350087 | Received 08 Feb 2024, Accepted 27 Apr 2024, Published online: 12 May 2024

References

  • Tahlan S, Kumar S, Narasimhan B. Pharmacological significance of heterocyclic 1 H-benzimidazole scaffolds: a review. BMC Chem. 2019;13:,101. doi:10.1186/s13065-019-0516-8
  • Akhtar W, Khan MF, Verma G, et al. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur J Med Chem. 2017;126:705–753. doi:10.1016/j.ejmech.2016.12.010
  • Karci H, Dündar M, Nawaz Z, et al. Sythesis, characterisation, anticancer and antimicrobial activity of Ag-N-heterocyclic carbene complexes containing benzimidazole derivatives. Inorg Chim Acta. 2024;565:121992. doi:10.1016/j.ica.2024.121992
  • Kharitonova MI, Konstantinova ID, Miroshnikov AI. Benzimidazole nucleosides: antiviral and antitumour activities and methods of synthesis. Russ Chem Rev. 2018;87(11):1111–1138. doi:10.1070/RCR4832
  • Abu-Dief AM, El-Khatib RM, El-Dabea T, et al. Design, preparation, physicochemical characterization, structural conformational, biological evaluation, and DNA interaction for some new benzimidazole complexes. Appl Organomet Chem. 2024;38:e7358. doi:10.1002/aoc.7358
  • Gandin V, Porchia M, Tisato F, et al. Novel mixed-ligand copper (I) complexes: role of diimine ligands on cytotoxicity and genotoxicity. J Med Chem. 2013;56(18):7416–7430. doi:10.1021/jm400965m
  • Abu-Dief AM, El-Dabea T, El-Khatib RM, et al. Synthesize, structural inspection, stoichiometry in solution and DFT calculation of some novel mixed ligand complexes: DNA binding, biomedical applications and molecular docking approach. J Mol Liq. 2024:399:124422. doi:10.1016/j.molliq.2024.124422
  • Revanasiddappa HD, Shivamallu C, Viswanath PM, et al. Novel benzimidazole derived imine ligand and its Co (III) and Cu (II) complexes as anticancer agents: chemical synthesis, DFT studies, in vitro and in vivo biological investigations. Pharmaceuticals. 2023;16(1):125. doi:10.3390/ph16010125
  • Mo Q, Deng J, Liu Y, et al. Mixed-ligand Cu (II) hydrazone complexes designed to enhance anticancer activity. Eur J Med Chem. 2018;156:368–380. doi:10.1016/j.ejmech.2018.07.022
  • Mjos KD, Orvig C. Metallodrugs in medicinal inorganic chemistry. Chem Rev. 2014;114(8):4540–4563. doi:10.1021/cr400460s
  • Muhammad N, Guo Z. Metal-based anticancer chemotherapeutic agents. Curr Opin Chem Biol. 2014;19:144–153. doi:10.1016/j.cbpa.2014.02.003
  • Nazarov AA, Hartinger CG, Dyson PJ. Opening the lid on piano-stool complexes: an account of ruthenium (II)–arene complexes with medicinal applications. J Organomet Chem. 2014;751:251–260. doi:10.1016/j.jorganchem.2013.09.016
  • Charef N, Sebti F, Arrar L, et al. Synthesis, characterization, X-ray structures, and biological activity of some metal complexes of the Schiff base 2, 2′-(((azanediylbis (propane-3, 1-diyl)) bis (azanylylidene)) bis (methanylylidene)) diphenol. Polyhedron. 2015;85:450–456. doi:10.1016/j.poly.2014.09.006
  • Wehbe M, Leung AW, Abrams MJ, et al. A perspective–can copper complexes be developed as a novel class of therapeutics. Dalton Trans. 2017;46(33):10758–10773. doi:10.1039/C7DT01955F
  • Claudel M, Schwarte JV, Fromm KM. New antimicrobial strategies based on metal complexes. Chemistry. 2020;2(4):849–899. doi:10.3390/chemistry2040056
  • Hrioua A, Loudiki A, Farahi A, et al. Complexation of amoxicillin by transition metals: physico-chemical and antibacterial activity evaluation. Bioelectrochem. 2021;142:107936. doi:10.1016/j.bioelechem.2021.107936
  • Ronconi L, Sadler PJ. Using coordination chemistry to design new medicines. Coord Chem Rev. 2007;251(13–14):1633–1648. doi:10.1016/j.ccr.2006.11.017
  • Hossain MS, Zakaria CM, Kudrat-E-Zahan M. Metal complexes as potential antimicrobial agent: a review. Am J Heterocycl Chem. 2018;4(1):1–21. doi:10.11648/j.ajhc.20180401.11
  • Marzano C, Pellei M, Tisato F, et al. Copper complexes as anticancer agents. Med Chem. 2009;9(2):185–211.
  • do Couto Almeida J, Paixão DA, Marzano IM, et al. Copper (II) complexes with β-diketones and N-donor heterocyclic ligands: crystal structure, spectral properties, and cytotoxic activity. Polyhedron. 2015;89:1–8. doi:10.1016/j.poly.2014.12.026
  • Ruiz-Azuara L, Bravo-Gomez ME. Copper compounds in cancer chemotherapy. Curr Med Chem. 2010;17(31):3606–3615. doi:10.2174/092986710793213751
  • Tisato F, Marzano C, Porchia M, et al. Copper in diseases and treatments, and copper-based anticancer strategies. Med Res Rev. 2010;30(4):708–749. doi:10.1002/med.20174
  • Mutlu Gencçkal HM, Erkisa M, Alper P, et al. Mixed ligand complexes of Co(II), Ni(II) and Cu(II) with quercetin and diimine ligands: synthesis, characterization, anti-cancer and anti-oxidant activity. J Biol Inorg Chem. 2020;25:161–177. doi:10.1007/s00775-019-01749-z
  • Crans DC, Smee JJ, Gaidamauskas E, et al. The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev. 2004;104(2):849–902. doi:10.1021/cr020607t
  • Da Silva JA, da Silva JJF, Pombeiro AJ. Oxovanadium complexes in catalytic oxidations. Coord Chem Rev. 2011;255(19–20):2232–2248. doi:10.1016/j.ccr.2011.05.009
  • El-Deen IM, Shoair AF, El-Bindary MA. Synthesis, characterization and biological properties of oxovanadium (IV) complexes. J Mol Struct. 2019;1180:420–437. doi:10.1016/j.molstruc.2018.12.012
  • Kumar A, Dixit A, Sahoo S, et al. Crystal structure, DNA crosslinking and photo-induced cytotoxicity of oxovanadium (IV) conjugates of boron-dipyrromethene. J Inorg Biochem. 2020;202:110817. doi:10.1016/j.jinorgbio.2019.110817
  • Korbecki J, Baranowska-Bosiacka I, Gutowska I, et al. Biochemical and medical importance of vanadium compounds. Acta Biochim Pol. 2012;59(2):195. doi:10.18388/abp.2012_2138
  • Adam MSS, Alghanim AS, Abdel-Rahman OS, et al. Diisatin malonyldihydrazone complexes of high valent oxovanadium and oxozirconium ions for bio-chemical effectiveness and catalytic thiophene oxidation. J Mol Liq. 2024;397:124183. doi:10.1016/j.molliq.2024.124183
  • Djokić S. Treatment of various surfaces with silver and its compounds for topical wound dressings, catheter and other biomedical applications. ECS Trans. 2008;11(21):1–12. doi:10.1149/1.2928902
  • Stillman MJ, Presta A, Gui Z, et al. Spectroscopic studies of copper, silver and gold metallo-thioneins. Met Based Drugs. 1994;1(5–6):375–394. doi:10.1155/MBD.1994.375
  • Shukla S, Mishra AP. Synthesis, structure, and anticancerous properties of silver complexes. J Chem. 2013;2013:527123. doi:10.1155/2013/527123
  • Abu-Dief AM, El-Khatib RM, El-Dabea T, et al. Fabrication, structural elucidation of some new metal complexes based on N-(1H-Benzoimidazol-2-yl)-guanidine ligand: DNA interaction, pharmaceutical studies and molecular docking approach. J Mol Liq. 2023;386:122353. doi:10.1016/j.molliq.2023.122353
  • Al-Resayes SI, Jarad AJ, Al-Zinkee JM, et al. Synthesis, characterization, antimicrobial studies, and molecular docking studies of transition metal complexes formed from a benzothiazole-based azo ligand. BCSE. 2023;37(4):931–944.
  • Mabrouk M, Hammad SF, Abdelaziz MA, et al. Ligand exchange method for determination of mole ratios of relatively weak metal complexes: a comparative study. Chem Central J. 2018;12:1–7. doi:10.1186/s13065-018-0512-4
  • Tarai SK, Mandal S, Bhaduri R, et al. Bioactivity, molecular docking and anticancer behavior of pyrrolidine based Pt (II) complexes: their kinetics, DNA and BSA binding study by spectroscopic methods. Spectrochim Acta A Mol Biomol Spectrosc. 2023;287:122059. doi:10.1016/j.saa.2022.122059
  • Gogoi HP, Barman P. Salophen type ONNO donor Schiff base complexes: synthesis, characterization, bioactivity, computational, and molecular docking investigation. Inorganica Chim Acta. 2023;556:121668. doi:10.1016/j.ica.2023.121668
  • Bouzerafa B, Aggoun D, Ouennoughi Y, et al. Synthesis, spectral characterization and study of thermal behavior kinetics by thermogravimetric analysis of metal complexes derived from salicylaldehyde and alkylamine. J Mol Struct. 2017;1142:48–57. doi:10.1016/j.molstruc.2017.04.029
  • Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201(4914):68–69. doi:10.1038/201068a0
  • Bonaccorso C, Marzo T, La Mendola D. Biological applications of thiocarbohydrazones and their metal complexes: a perspective review. Pharmaceuticals. 2019;13(1):4. doi:10.3390/ph13010004
  • Naureen B, Miana GA, Shahid K, et al. Iron (III) and zinc (II) monodentate Schiff base metal complexes: synthesis, characterisation and biological activities. J Mol Struct. 2021;1231:129946. doi:10.1016/j.molstruc.2021.129946
  • Mohamed GG, Omar MM, Ibrahim AA. Biological activity studies on metal complexes of novel tridentate Schiff base ligand. Spectroscopic and thermal characterization. Eur J Med Chem. 2009;44(12):4801–4812. doi:10.1016/j.ejmech.2009.07.028
  • Hehre WJ. Ab initio molecular orbital theory. Acc Chem Res. 1976;9(11):399–406. doi:10.1021/ar50107a003
  • Castro ED, Jorge F. Accurate universal Gaussian basis set for all atoms of the periodic table. J Chem Phys 1998;108(13):5225–5229.
  • Scholz C, Knorr S, Hamacher K, et al. DOCKTITE. A highly versatile step-by-step workflow for covalent docking and virtual screening in the molecular operating environment. J Chem Inf Model. 2015;55(2):398–406. doi:10.1021/ci500681r
  • Milewski S. Glucosamine-6-phosphate synthase – the multi-facets enzyme. Biochim Biophys Acta (BBA) Protein Struct Mol Enzymol. 2002;1597(2):173–192.
  • Mouilleron S, Badet-Denisot M-A, Golinelli-Pimpaneau B. Ordering of C-terminal loop and glutaminase domains of glucosamine-6-phosphate synthase promotes sugar ring opening and formation of the ammonia channel. J Mol Biol. 2008;377(4):1174–1185. doi:10.1016/j.jmb.2008.01.077
  • Abu-Dief AM, El-Dabea T, El-Khatib R, et al. Fabrication, Physicochemical characterization and theoretical studies of some new mixed ligands complexes based on N-(1H-benzimidazol-2-yl)-guanidine and 1, 10-phenanthroline: DNA interaction, biological applications and molecular docking approach. J Mol Struct. 2024;1310:138328.
  • Bolduc JA, Nelson KJ, Haynes AC, et al. Novel hyperoxidation resistance motifs in 2-Cys peroxiredoxins. J Biol Chem. 2018;293(30):11901–11912. doi:10.1074/jbc.RA117.001690
  • McNutt MC, Kwon HJ, Chen C, et al. Antagonism of secreted PCSK9 increases low density lipoprotein receptor expression in HepG2 cells. J Biol Chem. 2009;284(16):10561–10570. doi:10.1074/jbc.M808802200
  • Colloc’h N, Gabison L, Monard G, et al. Oxygen pressurized X-ray crystallography: probing the dioxygen binding site in cofactorless urate oxidase and implications for its catalytic mechanism. Biophys J. 2008;95(5):2415–2422. doi:10.1529/biophysj.107.122184
  • Kumar N, Kaushal R, Awasthi P. Non-covalent binding studies of transition metal complexes with DNA: a review. J Mol Struct. 2023;1288:135751. doi:10.1016/j.molstruc.2023.135751
  • Nongpiur CGL, Verma AK, Singh RK, et al. Half-sandwich ruthenium (II), rhodium (III) and iridium (III) fluorescent metal complexes containing pyrazoline based ligands: DNA binding, cytotoxicity and antibacterial activities. J Inorg Biochem. 2023;238:112059. doi:10.1016/j.jinorgbio.2022.112059
  • Dorafshan Tabatabai AS, Dehghanian E, Mansouri-Torshizi H, et al. Computational and experimental examinations of new antitumor palladium (II) complex: CT-DNA-/BSA-binding, in-silico prediction, DFT perspective, docking, molecular dynamics simulation and ONIOM. J Biomol Struct Dyn. 2023:1–23. doi:10.1080/07391102.2023.2226715
  • Mahadevi P, Sumathi S. Schiff base metal complexes: synthesis, optoelectronic, biological studies, fabrication of zinc oxide nanoparticles and its photocatalytic activity. Results Chem. 2023;6:101026. doi:10.1016/j.rechem.2023.101026
  • Izadyar A, Mansouri-Torshizi H, Dehghanian E, et al. Spectroscopy, docking and molecular dynamics studies on the interaction between cis and trans palladium-alanine complexes with calf-thymus DNA and antitumor activities. J Coord Chem. 2023;76(3–4):519–542. doi:10.1080/00958972.2023.2192331
  • Ji X, Zhu X, Chen S, et al. Two Cu (II) and Zn (II) complexes derived from 5-(Pyrazol-1-yl) nicotinic acid: crystal structure, DNA binding and anticancer studies. J Solid State Chem. 2022;305:122707. doi:10.1016/j.jssc.2021.122707
  • Sumi M, Nevaditha NT, Kumari BS. Synthesis, structural evaluation, antioxidant, DNA cleavage, anticancer activities and molecular docking study of metal complexes of 2-amino thiophene derivative. J Mol Struct. 2023;1272:134091. doi:10.1016/j.molstruc.2022.134091
  • Dorafshan Tabatabai AS, Dehghanian E, Mansouri-Torshizi H. In-silico and in-detail experimental interaction studies of new antitumor Zn (II) complex with CT-DNA and serum albumin. J Biomol Struct Dyn. 2023;41(19):9614–9631. doi:10.1080/07391102.2022.2144459
  • Sarwar T, Ishqi HM, Rehman SU, et al. Caffeic acid binds to the minor groove of calf thymus DNA: a multi-spectroscopic, thermodynamics and molecular modelling study. Int J Biol Macromol. 2017;98:319–328. doi:10.1016/j.ijbiomac.2017.02.014
  • Shahabadi N, Mahdavi M, Taherpour A(A), et al. Synthesis, characterization and in vitro DNA binding studies of a new copper(II) complex containing antioxidant ferulic acid. J Coord Chem. 2017;70(15):2589–2605. doi:10.1080/00958972.2017.1363890
  • Bhattacharya S, Sherje AP. Development of resveratrol and green tea sunscreen formulation for combined photoprotective and antioxidant properties. J Drug Delivery Sci Technol. 2020;60:102000. doi:10.1016/j.jddst.2020.102000
  • El-Lateef HMA, Khalaf MM, Shehata MR, et al. Fabrication, DFT calculation, and molecular docking of two Fe (III) imine chelates as anti-COVID-19 and pharmaceutical drug candidate. Inter J Mol Sci. 2022;23(7):3994. doi:10.3390/ijms23073994
  • Ejidike IP, Ajibade PA. Synthesis, spectroscopic, antibacterial and free radical scavenging studies of Cu(II), Ni(II), Zn(II) and Co(II) complexes of 4,4’-ethane-1,2- diylbis[nitrilo(1E)eth-1-yl-1-ylidene] dibenzene 1,3-diol Schiff base. J Pharm Sci Res. 2017;9(7):593–600.
  • Ashrafuzzaman MD, Camellia FK, Mahmud AA, et al. Bioactive mixed ligand metal complexes of Cu (II), Ni (II), and Zn (II) ions: synthesis, characterization, antimicrobial and antioxidant properties. JCCHEMS. 2021;66(3):5295–5299.
  • Koleva V, Yotova I, Dragoeva A, et al. Synthesis, cytotoxicity, and promising anticancer potential of novel β-amino- and β-iminophosphonates. J Appl Pharm Sci. 2021;11:080–088.
  • Parsekar SU, Paliwal K, Haldar P, et al. Synthesis, characterization, crystal structure, DNA and HSA interactions, and anticancer activity of a mononuclear Cu (II) complex with a Schiff base ligand containing a thiadiazoline moiety. ACS Omega. 2022;7(3):2881–2896. doi:10.1021/acsomega.1c05750
  • Gavali LV, Mohammed AA, Al-Ogaili MJ, et al. Novel terephthalaldehyde bis (thiosemicarbazone) Schiff base ligand and its transition metal complexes as antibacterial agents: synthesis, characterization and biological investigations. Res Chem. 2024;7:101316.
  • Roopashree B, Gayathri V, Mukund H. Synthesis, characterization, and biological activities of zinc, cadmium, copper, and nickel complexes containing meta-aminophenyl benzimidazole. J Coord Chem. 2012;65(8):1354–1370. doi:10.1080/00958972.2012.673123
  • Nakamoto K. Infrared spectra of inorganic, coordination compounds. Vol. 25. New York: Wiley Interscience; 1970. p. 232–239.
  • Hassan SS, Khalf-Alla PA. Anti-hepatocellular carcinoma, antioxidant, anti-inflammation and antimicrobial investigation of some novel first and second transition metal complexes. Appl Organometal Chem. 2020;34(4):e5432. doi:10.1002/aoc.5432
  • Khan T, Zehra S, Alvi A, et al. Synthesis, characterization, computational studies and antimicrobial activity evaluation of mixed ligand-metal complexes of selected thiosemicarbazones. Chem Select. 2024;9(10):e202400202.
  • Kumaravel G, Ponnukalai PU, Mahendiran D, et al. Exploring the DNA interactions, FGF growth receptor interaction and biological screening of metal (II) complexes of NNN donor ligand derived from 2–(aminomethyl) benzimidazole. Int J Biol Macromol. 2019;126:1303–1317. doi:10.1016/j.ijbiomac.2018.09.116
  • Fataftah MS, Krzyaniak MD, Vlaisavljevich B, et al. Metal–ligand covalency enables room temperature molecular qubit candidates. Chem Sci. 2019;10(27):6707–6714. doi:10.1039/C9SC00074G
  • Manjuraj T, Krishnamurthy G, Bodke YD, et al. Synthesis, XRD, thermal, spectroscopic studies and biological evaluation of Co (II), Ni (II) Cu (II) metal complexes derived from 2-benzimidazole. J Mol Struct. 2018;1171:481–487. doi:10.1016/j.molstruc.2018.06.055
  • Mabrouk M, Hammad SF, Abdelaziz MA, et al. Ligand exchange method for determination of mole ratios of relatively weak metal complexes: a comparative study. Chem Cent J. 2018;12:1–7. doi:10.1186/s13065-018-0512-4
  • Eyring H. The activated complex in chemical reactions. J Chem Phys. 1935;3(2):107–115. doi:10.1063/1.1749604
  • Mansour F, Danielson N. Ligand exchange spectrophotometric method for the determination of mole ratio in metal complexes. Microchem J. 2012;103:74–78. doi:10.1016/j.microc.2012.01.008
  • Peng X, Cui GH, Li DJ, et al. Structure, spectroscopy, and theory calculations of mononuclear mixed-ligand copper (II) complex with malonate and 2-propylimidazole [Cu (mal)(PIM)2 (H2O)]. J Mol Struct. 2010;971(1–3):47–52. doi:10.1016/j.molstruc.2010.03.019
  • Murugan T, Venkatesh R, Geetha K, et al. Synthesis, spectral investigation, DFT, antibacterial, antifungal and molecular docking studies of Ni (II), Zn (II), Cd (II) complexes of tetradentate Schiff-base ligand. Asian J Chem. 2023;35:1509–1517. doi:10.14233/ajchem.2023.27808
  • Hay PJ, Wadt WR. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys. 1985;82(1):270–283. doi:10.1063/1.448799
  • Shaaban S, Al-Faiyz YS, Alsulaim GM, et al. Synthesis of new organoselenium-based succinanilic and maleanilic derivatives and in silico studies as possible SARS-CoV-2 main protease inhibitors. Inorganics. 2023;11(8):321. doi:10.3390/inorganics11080321
  • El-Sherif AA. Synthesis, spectroscopic characterization and biological activity on newly synthesized copper (II) and nickel (II) complexes incorporating bidentate oxygen–nitrogen hydrazone ligands. Inorg Chim Acta. 2009;362(14):4991–5000. doi:10.1016/j.ica.2009.08.004
  • Rudrapal M, Gogoi N, Chetia D, et al. Repurposing of phytomedicine-derived bioactive compounds with promising anti-SARS-CoV-2 potential: molecular docking, MD simulation and drug-likeness/ADMET studies. Saudi J Biolog Sci. 2022;29(4):2432–2446. doi:10.1016/j.sjbs.2021.12.018
  • Yang L, Powell DR, Houser RP. Structural variation in copper (I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ 4. Dalton Trans. 2007;9:955–964. doi:10.1039/B617136B
  • Alasbahy WM, Shamsi M. In vitro DNA binding, pBR322 cleavage and molecular docking studies of 1, 2-diaminobenzene, dichloro glycyl glycinate tin (IV) and zirconium (IV) complexes. J Biomol Struct Dyn. 2022;40(22):11484–11494. doi:10.1080/07391102.2021.1959402
  • Sanjurani T, Paul S, Barman P. Indole-based NNN donor Schiff base ligand and its complexes: sonication-assisted synthesis, characterization, DNA binding, anti-cancer evaluation and in-vitro biological assay. Bio Organ Chem. 2024;146:107281. doi:10.1016/j.bioorg.2024.107281
  • Adam MSS, Khalil A. Bioreactivity of divalent bimetallic vanadyl and zinc complexes bis-oxalyldihydrazone ligand against microbial and human cancer series. ctDNA interaction mode. Int J Biol Macromol. 2023;249:125917. doi:10.1016/j.ijbiomac.2023.125917
  • Adam MSS, Mohamed MA. Effect of Cu+/2+ ions on the biological activity of their bis-oxalyldihydrazone complexes: ctDNA interaction, antimicrobial and anticancer action. Appl Organomet Chem. 2023;37(9):e7190.
  • Khalil MH, Abdullah FO. Synthesis, characterisation, and anticancer and antioxidant activities of novel complexes of palladium and an organic Schiff-base ligand. BCSE. 2024;38(3):605–613.
  • Khalil A, Adam MSS. Bimetallic bis-aroyldihydrazone-isatin complexes of high O=V (IV) and low Cu (II) valent ions as effective biological reagents for antimicrobial and anticancer assays. Molecules. 2024;29(2):414. doi:10.3390/molecules29020414
  • El-Sayed YS, Gaber M, Fahmy RM, et al. Characterization, theoretical computation, DNA-binding, molecular docking, antibacterial, and antioxidant activities of new metal complexes of (E)-1-([1H-1, 2, 4-triazol-3-yl] diazenyl) naphthalen-2-ol. Appl Organomet Chem. 2022;36(5):e6628. doi:10.1002/aoc.6628