136
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel multinary nanocomposite of GO/AlCrO3/SiO2/Mn3O4/SnO2: synthesis and electrochemical performance for energy storage system

, , , , , , , & show all
Article: 2351619 | Received 20 Jan 2023, Accepted 01 May 2024, Published online: 17 May 2024

References

  • Ansari MZ, Ansari SA, Kim SH. Fundamentals and recent progress of Sn-based electrode materials for supercapacitors: A comprehensive review. J Energ Storage. 2022;53:105187. doi:10.1016/j.est.2022.105187
  • Ansari MZ, Nandi DK, Janicek P, et al. Low-temperature atomic layer deposition of highly conformal tin nitride thin films for energy storage devices. ACS Appl Mater Interfaces. 2019;11(46):43608–43621. doi:10.1021/acsami.9b15790
  • Parveen N, Ansari SA, Ansari MZ, et al. Manganese oxide as an effective electrode material for energy storage: A review. Environ Chem Lett. 2022;1:1–27. doi:10.1007/s10311-021-01316-6
  • Sun W, Lipka SM, Yang F. Activated carbon derived from hemp and Its Use in electrochemical capacitors. InElectrochemical Society Meeting Abstracts 228 2015 7 9, 587–587. The Electrochemical Society, Inc. doi:10.1149/MA2015-02/9/587
  • Du X, Ren X, Xu C, et al. Recent advances on the manganese cobalt oxides as electrode materials for supercapacitor applications: A comprehensive review. J Energ Storage. 2023;68:107672. doi:10.1016/j.est.2023.107672
  • Ren X, Bao E, Liu X, et al. Advanced hybrid supercapacitors assembled with beta-Co(OH)2 microflowers and microclews as high-performance cathode materials. Colloids Surf, A. 2023;667:131391.doi:10.1016/j.colsurfa.2023.131391
  • Sun J, Xu C, Chen H. A review on the synthesis of CuCo2O4-based electrode materials and their applications in supercapacitors. J Materiom. 2021;7(1):98–126. doi:10.1016/j.jmat.2020.07.013
  • Bao E, Ren X, Wu R, et al. Porous MgCo2O4 nanoflakes serve as electrode materials for hybrid supercapacitors with excellent performance. J Colloid Interface Sci. 2022;625:925–935. doi:10.1016/j.jcis.2022.06.098
  • Sun J, Xu C, Chen H. A review on the synthesis of CuCo2O4-based electrode materials and their applications in supercapacitors. J Materiom. 2021;7(1):98–126. doi:10.1016/j.jmat.2020.07.013
  • Bao E, Sun J, Liu Y, et al. Facile preparation of SnS2 nanoflowers and nanoplates for the application of high-performance hybrid supercapacitors. Int J Hydrogen Energy. 2022;47(92):39204–39214. doi:10.1016/j.ijhydene.2022.09.081
  • Gogotsi Y, Simon P. True performance metrics in electrochemical energy storage. science. 2011;334(6058):917–918. doi:10.1126/science.1213003
  • Fernando JF. Reduction of reactive power waste of inductive electrical appliances using power factor correction. Vidyodaya J Sci. 2021;21(1):7–12. doi:10.31357/vjs.v24i01.4960
  • Shafique R, Mahmood A, Batool K, et al. Graphene oxide/nickel chromite nanocomposite: optimized synthesis, structural and optical properties. ECS J Solid State Sci Technol. 2021;10(10):101005. doi:10.1149/2162-8777/ac2911
  • Slater MD, Kim D, Lee E, et al. Sodium-ion batteries. Adv Funct Mater. 2013;23(8):947–958. doi:10.1002/adfm.201200691
  • Zhang Z, Mu S, Zhang B, et al. A novel synthesis of carbon nanotubes directly from an indecomposable solid carbon source for electrochemical applications. J Mater Chem A. 2016;4(6):2137–2146. doi:10.1039/C5TA09631F
  • Xu C, Wang X, Zhu J. Graphene−metal particle nanocomposites. J Phys Chem C. 2008;112(50):19841–5. doi:10.1021/jp807989b
  • Reddy AL, Shaijumon MM, Gowda SR, et al. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 2009;9(3):1002–1006. doi:10.1021/nl803081j
  • Kolts JH, Delzer GA. Enhanced ethylene and ethane production with free-radical cracking catalysts. Science. 1986;232(4751):744–746. doi:10.1126/science.232.4751.744
  • Fouda MF, Amin RS, Selim MM. Thermal and spectroscopic characterization of reaction products of al-nitrate-Cr-nitrate interaction at various temperatures. Thermochim Acta. 1989;141:277–291. doi:10.1016/0040-6031(89)87063-7
  • Fouda MF, Amin RS, Selim MM. Thermal and spectroscopic characterization of reaction products of Al-nitrate-Cr-carbonate interaction at different temperatures. React Solids. 1990;8(1-2):21–28. doi:10.1016/0168-7336(90)80004-4
  • Heinemann H, Carberry JJ, editors. Catalysis reviews: science and engineering. New York: M. Dekker; 1974.
  • Thackeray MM, David WI, Bruce PG, et al. Lithium insertion into manganese spinels. Mater Res Bull. 1983;18(4):461–472. doi:10.1016/0025-5408(83)90138-1
  • Pankov VV, Fournier T, Pernet M, et al. Superconductors prepared by the diffusion couples technique. Mater Res Bull. 1993;28(1):9–17. doi:10.1016/0025-5408(93)90003-V
  • Piligkos S, Rajaraman G, Soler M, et al. Studies of an enneanuclear manganese single-molecule magnet. J Am Chem Soc 2005;127(15):5572–5580. doi:10.1021/ja042302x
  • Yoshikai N, Zhang SL, Yamagata KI, et al. Mechanistic study of the manganese-catalyzed [2 + 2 + 2] annulation of 1,3-dicarbonyl compounds and terminal alkynes. J Am Chem Soc 2009;131(11):4099–4109. doi:10.1021/ja809202y
  • Ding S, Luan D, Boey FY, et al. Sno2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem Commun. 2011;47(25):7155–7157. doi:10.1039/c1cc11968k
  • Huang X, Zhou X, Zhou L, et al. A facile One-step solvothermal synthesis of SnO2/graphene nanocomposite and Its application as an anode material for lithium-Ion batteries. ChemPhysChem. 2011;12(2):278–281. doi:https://doi.org/10.1002/cphc.201000376.
  • Liu XG, Geng DY, Meng H, et al. Microwave absorption properties of FCC-Co/Al2O3 and FCC-Co/Y2O3 nanocapsules. Solid State Commun. 2009;149(1-2):64–67. doi:10.1016/j.ssc.2008.10.015
  • Jang Y, Choi JJ, Kwon YM, et al. 3D (3-dimensional) porous silver nonwoven mats prepared with cellulosic templates and spray equipment for use as supercapacitor current collectors. Energy. 2015;93:1303–1307. doi:10.1016/j.energy.2015.10.013
  • Rakhi RB, Lekshmi ML. Reduced graphene oxide based ternary nanocomposite cathodes for high-performance aqueous asymmetric supercapacitors. Electrochim Acta. 2017;231:539–548. doi:10.1016/j.electacta.2017.02.095
  • Yanik MO, Yigit EA, Akansu YE, et al. Magnetic conductive polymer-graphene nanocomposites based supercapacitors for energy storage. Energy. 2017;138:883–889. doi:10.1016/j.energy.2017.07.022
  • Ai W, Zhou W, Du Z, et al. Benzoxazole and benzimidazole heterocycle-grafted graphene for high-performance supercapacitor electrodes. J Mater Chem. 2012;22(44):23439–23446. doi:10.1039/c2jm35234f
  • Zhang L, Jamal R, Zhao Q, et al. A highly efficient flexible dye-sensitized solar cell based on nickel sulfide/platinum/titanium counter electrode. Nanoscale Res Lett. 2015;10:1–9. doi:10.1186/1556-276X-10-1
  • Navrotsky A. Energetics and crystal chemical systematics among ilmenite, lithium niobate, and perovskite structures. Chem Mater. 1998;10(10):2787–2793. doi:10.1021/cm9801901
  • Luo J, Jang HD, Sun T, et al. Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano. 2011;5(11):8943–8949. doi:10.1021/nn203115u
  • Wang WN, Jiang Y, Biswas P. Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: confinement force relationship. J Phys Chem Lett. 2012;3(21):3228–3233. doi:10.1021/jz3015869
  • Chen Y, Guo F, Jachak A, et al. Aerosol synthesis of cargo-filled graphene nanosacks. Nano Lett 2012;12(4):1996–2002. doi:10.1021/nl2045952
  • Chen Y, Guo F, Qiu Y, et al. Encapsulation of particle ensembles in graphene nanosacks as a new route to multifunctional materials. Acs Nano. 2013;7(5):3744–3753. doi:10.1021/nn3055913
  • Chadli I, Omari M, Abu Dalo M, et al. Preparation by sol–gel method and characterization of Zn-doped LaCrO3 perovskite. J Solgel Sci Technol. 2016;80:598–605. doi:10.1007/s10971-016-4170-5
  • Wang G, Ma Z, Fan Y, et al. Preparation of size-selective Mn3O4hexagonal nanoplates with superior electrochemical properties for pseudocapacitors. Phys Chem Chem Phys. 2015;17(35):23017–23025. doi:10.1039/C5CP03366G
  • Shafique R, Rani M, Mahmood A, et al. Copper chromite/graphene oxide nanocomposite for capacitive energy storage and electrochemical applications. Int J Environ Sci Technol. 2022;19(8):7517–7526. doi:10.1007/s13762-021-03616-4
  • Zhang H, Peng C, Yang J, et al. Uniform ultrasmall graphene oxide nanosheets with Low cytotoxicity and high cellular uptake. ACS Appl. Mater. Interfac. 2013;5(5):1761–1767. doi:10.1021/am303005j
  • Sun D, Tan Z, Tian X, et al. Graphene: A promising candidate for charge regulation in high-performance lithium-ion batteries. Nano Res. 2021;14(12):4370–4385. doi:10.1007/s12274-021-3405-0
  • He H, Gao C. Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4nanoparticles. ACS Appl Mater Interfaces. 2010;2(11):3201–3210. doi:10.1021/am100673g
  • Liu J, Cheng J, Che R, et al. Double-Shelled yolk–shell microspheres with Fe3O4cores and SnO2double shells as high-performance microwave absorbers. J Phys Chem C. 2013;117(1):489–495. doi:10.1021/jp310898z
  • Cao MS, Yang J, Song WL, et al. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl Mater Interfaces. 2012;4(12):6949–6956. doi:10.1021/am3021069
  • Zhu M, Meng D, Wang C, et al. Facile fabrication of hierarchically porous CuFe2O4nanospheres with enhanced capacitance property. ACS Appl Mater Interfaces. 2013;5(13):6030–6037. doi:10.1021/am4007353
  • Pendashteh A, Rahmanifar MS, Kaner RB, et al. Facile synthesis of nanostructured CuCo2O4 as a novel electrode material for high-rate supercapacitors. Chem Commun. 2014;50(16):1972–1975. doi:10.1039/c3cc48773c
  • Adams DR, Meyers SA, Beidas RS. The relationship between financial strain, perceived stress, psychological symptoms, and academic and social integration in undergraduate students. J Am Coll Health. 2016;64(5):362–370. doi:10.1080/07448481.2016.1154559
  • Debataraja A, Muchtar AR, Septiani NL, et al. High performance carbon monoxide sensor based on nano composite of SnO2-graphene. IEEE Sens J. 2017;17(24):8297–8305. doi:10.1109/JSEN.2017.2764088
  • Lefez B, Nkeng P, Lopitaux J, et al. Characterization of cobaltite spinels by reflectance spectroscopy. Mater Res Bull. 1996;31(10):1263–1267. doi:10.1016/0025-5408(96)00122-5
  • Guan C, Xia X, Meng N, et al. Hollow core–shell nanostructure supercapacitor electrodes: gap matters. Energy Environ Sci. 2012;5(10):9085–9090. doi:10.1039/c2ee22815g
  • Pan GX, Xia XH, Cao F, et al. Template-free synthesis of hierarchical porous Co 3 O 4 microspheres and their application for electrochemical energy storage. Electrochim Acta. 2015;173:385–392. doi:10.1016/j.electacta.2015.05.078
  • Patake VD, Lokhande CD, Joo OS. Electrodeposited ruthenium oxide thin films for supercapacitor: effect of surface treatments. Appl Surf Sci. 2009;255(7):4192–4196. doi:10.1016/j.apsusc.2008.11.005
  • Aghazadeh M. Electrochemical preparation and properties of nanostructured Co3O4 as supercapacitor material. J Appl Electrochem. 2012;42:89–94. doi:10.1007/s10800-011-0375-z
  • Li Q, Zeng L, Wang J, et al. Magnetic mesoporous organic−inorganic NiCo2O4hybrid nanomaterials for electrochemical immunosensors. ACS Appl Mater Interfaces. 2011;3(4):1366–1373. doi:10.1021/am200228k
  • Hwang SG, Ryu SH, Yun SR, et al. Behavior of NiO–MnO2/MWCNT composites for use in a supercapacitor. Mater Chem Phys. 2011;130(1-2):507–512. doi:10.1016/j.matchemphys.2011.07.022
  • Verma S, Joshi HM, Jagadale T, et al. Nearly monodispersed multifunctional NiCo2O4spinel nanoparticles: magnetism, infrared transparency, and radiofrequency absorption. J Phys Chem C. 2008;112(39):15106–15112. doi:10.1021/jp804923t
  • Batool K, Rani M, Younus A, et al. Nanosized magnesium doped copper chromites spinel particles synthesis and characterization. ECS J Solid State Sci Technol. 2020;9(12):126005. doi:10.1149/2162-8777/abce00
  • Wang T, Liu Z, Lu M, et al. Graphene–Fe3O4 nanohybrids: synthesis and excellent electromagnetic absorption properties. J Appl Phys. 2013;113(2):024314–024314. doi:10.1063/1.4774243.
  • Liu PB, Huang Y, Sun X. Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide–Co3O4composites prepared by a hydrothermal method. ACS Appl Mater Interfaces. 2013;5(23):12355–12360. doi:10.1021/am404561c
  • Yu H, Wang T, Wen B, et al. Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J Mater Chem. 2012;22(40):21679–21685. doi:10.1039/c2jm34273a
  • Huang H, Huang Y, Wang M, et al. Preparation of hollow Zn2SnO4 boxes@C/graphene ternary composites with a triple buffering structure and their electrochemical performance for lithium-ion batteries. Electrochim Acta. 2014;147:201–208. doi:10.1016/j.electacta.2014.09.117
  • Alamdari S, Ghamsari MS, Afarideh H, et al. Preparation and characterization of GO-ZnO nanocomposite for UV detection application. Opt Mater (Amst). 2019;92:243–250. doi:10.1016/j.optmat.2019.04.041
  • Li R, Zhang L, Shi L, et al. Mxene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano. 2017;11(4):3752–3759. doi:10.1021/acsnano.6b08415
  • Liu J, Wu Q, Yi Y, et al. Assembling synthesis of barium chromate nano-superstructures using eggshell membrane as template. Bull Korean Chem Soc. 2004;25(12):1775–1778. doi:10.5012/bkcs.2004.25.12.1775
  • Luo Q, Chai B, Xu M, et al. Study of nanostructure and ethanol vapor sensing performance of WO3 thin films deposited by e-beam evaporation method under different deposition angles: application in breath analysis devices. Appl Phys A. 2018;124:1–8. doi:10.1007/s00339-017-1423-2
  • Lian W, Wang L, Wang X, et al. Facile preparation of BiOCl/Ti3C2hybrid photocatalyst with enhanced visible-light photocatalytic activity. Funct Mater Lett. 2019;12(01):1850100. doi:10.1142/S179360471850100X
  • Baskoro F, Wong CB, Kumar SR, et al. Graphene oxide-cation interaction: inter-layer spacing and zeta potential changes in response to various salt solutions. J Memb Sci. 2018;554:253–263. doi:10.1016/j.memsci.2018.03.006
  • Khalil WF, El-Sayyad GS, Rouby E, et al. Graphene oxide-based nanocomposites (GO-chitosan and GO-EDTA) for outstanding antimicrobial potential against some candida species and pathogenic bacteria. Int J Biol Macromol 2020;164:1370–1383. doi:10.1016/j.ijbiomac.2020.07.205
  • Yaqoob T, Rani M, Neffati R, et al. Novel GO/LiCr2O4 nanocomposite synthesis, characterizations and electrode testing for electrochemical applications. Mater Sci Engin B. 2023;287:116118. doi:10.1016/j.mseb.2022.116118
  • Lufrano F, Staiti P. Performance improvement of nafion based solid state electrochemical supercapacitor. Electrochim Acta. 2004;49(16):2683–2689. doi:10.1016/j.electacta.2004.02.021
  • Sahu SC, Samantara AK, Dash A, et al. Graphene-induced Pd nanodendrites: A high performance hybrid nanoelectrocatalyst. Nano Res. 2013;6:635–643. doi:10.1007/s12274-013-0339-1
  • Sagadevan S, Zaman Chowdhury Z, Johan MR, et al. A one-step facile route synthesis of copper oxide/reduced graphene oxide nanocomposite for supercapacitor applications. J Exp Nanosci. 2018;13(1):284–296. doi:10.1080/17458080.2018.1542512
  • Korkmaz S, Kariper İA. Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications. J Energ Storage. 2020;27:101038. doi:10.1016/j.est.2019.101038
  • Arvas MB, Gencten M, Sahin Y. One-step synthesized N-doped graphene-based electrode materials for supercapacitor applications. Ionics (Kiel). 2021;27:2241–2256. doi:10.1007/s11581-021-03986-2
  • Obodo RM, Ahmad A, Jain GH, et al. 8.0 MeV copper ion (Cu++) irradiation-induced effects on structural, electrical, optical and electrochemical properties of Co3O4-NiO-ZnO/GO nanowires. Mater Sci Energ Technol. 2020;3:193–200. doi:10.1016/j.mset.2019.10.006
  • Iqbal MZ, Haider SS, Siddique S, et al. Capacitive and diffusion-controlled mechanism of strontium oxide based symmetric and asymmetric devices. J Energ Storag. 2020;27:101056. doi:10.1016/j.est.2019.101056
  • Iqbal MZ, Faisal MM, Ali SR, et al. Co-MOF/polyaniline-based electrode material for high performance supercapattery devices. Electrochim Acta. 2020;346:136039. doi:10.1016/j.electacta.2020.136039
  • Iqbal MZ, Khan J. Optimization of cobalt-manganese binary sulfide for high performance supercapattery devices. Electrochim Acta. 2021;368:137529. doi:https://doi.org/10.1016/j.electacta.2020.137529.
  • Akram M, Rani M, Batool K, et al. Synthesis and characterization of quaternary GO/CoCrO3/SiO2/Ag2WO4Nanocomposite based on energy storage and photocatalytic applications. Mater Sci Engin B. 2023;298:116838. doi:10.1016/j.mseb.2023.116838
  • Batool K, Rani M, Rasool F, et al. Multinary nanocomposite of GO@SrO@CoCrO3@FeCr2O4@SnO2@SiO2 for superior electrochemical performance and water purification applications. Heliyon. 2023;9(4):e20675–e20675-15.
  • Alam S, Iqbal MZ. Nickel-manganese phosphate: An efficient battery-grade electrode for supercapattery devices. Ceram Int. 2021;47(8):11220–11230. doi:10.1016/j.ceramint.2020.12.247
  • Alam S, Iqbal MZ, Khan J. Green synthesis of nickel-manganese/polyaniline-based ternary composites for high-performance supercapattery devices. Int J Energy Res. 2021;45(7):11109–11122. doi:10.1002/er.6593
  • Alzaid M, Iqbal MZ, Alam S, et al. Binary composites of nickel-manganese phosphates for supercapattery devices. J Energ Storage. 2021;33:102020. doi:10.1016/j.est.2020.102020
  • Aguedo J, Lorencova L, Barath M, et al. Electrochemical impedance spectroscopy on 2D nanomaterial MXene modified interfaces: application as a characterization and transducing tool. Chemosensors. 2020;8(4):127. doi:10.3390/chemosensors8040127
  • Ali SR, Iqbal MZ, Faisal MM, et al. Diffusion control and surface control mechanism in hierarchical nanostructured porous zinc-basedMOFmaterial for supercapattery. Int J Energy Res. 2022;46(10):14424–14435.
  • Ayman I, Rasheed A, Ajmal S, et al. CoFe2O4nanoparticle-decorated 2D MXene: A novel hybrid material for supercapacitor applications. Energy Fuels. 2020;34(6):7622–7630. doi:10.1021/acs.energyfuels.0c00959
  • Ali SR, Iqbal MZ, Faisal MM, et al. Diffusion control and surface control mechanism in hierarchical nanostructured porous zinc-basedMOFmaterial for supercapattery. Int J Energy Res. 2022;46(10):14424–14435. doi:10.1002/er.8169
  • Iqbal MZ, Alam S, Afzal AM, et al. Binary composites of strontium oxide/polyaniline for high performance supercapattery devices. Solid State Ionics. 2020;347:115276. doi:10.1016/j.ssi.2020.115276
  • Akram M, Rani M, Shafique R, et al. Fabrication of LaCrO3@SiO2 nanoparticles supported with graphene-oxide for capacitive energy storage and photocatalytic degradation applications. J Inorg Organomet Polym Mater. 2024;34:361–373.
  • Butt TM, Janjua NK, Mujtaba A, et al. B-site doping in lanthanum cerate nanomaterials for water electrocatalysis. J Electrochem Soc. 2020;167(2):0026503. doi:10.1149/1945-7111/ab63c0
  • Eloul S, Batchelor-McAuley C, Compton RG. Thin film-modified electrodes: a model for the charge transfer resistance in electrochemical impedance spectroscopy. J Solid State Electrochem. 2014;18:3239–3243. doi:10.1007/s10008-014-2662-1
  • Heiduschka P, Munz AW, Göpel W. Impedance spectroscopy and scanning tunneling microscopy of polished and electrochemically pretreated glassy carbon. Electrochim Acta. 1994;39(14):2207–2223. doi:10.1016/0013-4686(94)E0166-W
  • Shinde SK, Yadav HM, Ghodake GS, et al. Novel and efficient hybrid supercapacitor of chemically synthesized quaternary 3D nanoflower-like NiCuCo2S4 electrode. Ceram Int. 2021;47(11):15639–15647. doi:10.1016/j.ceramint.2021.02.134
  • Isacfranklin M, Yuvakkumar R, Ravi G, et al. Quaternary Cu2FeSnS4/PVP/rGO composite for supercapacitor applications. ACS Omega. 2021;6(14):9471–9481. doi:10.1021/acsomega.0c06167
  • Wang F, Yao G, Xu M, et al. Large-scale synthesis of macroporous SnO2 with/without carbon and their application as anode materials for lithium-ion batteries. J Alloys Compd. 2011;509(20):5969–5973. doi:10.1016/j.jallcom.2011.03.041