309
Views
0
CrossRef citations to date
0
Altmetric
Review

A review of modeling and control of remote-controlled capsule endoscopes

ORCID Icon, , &
Pages 293-306 | Received 19 Oct 2023, Accepted 25 Mar 2024, Published online: 04 Apr 2024

References

  • Appleyard M, Fireman Z, Glukhovsky A, et al. A randomized trial comparing wireless capsule endoscopy with push enteroscopy for the detection of small-bowel lesions. Gastroenterol. 2000;119(6):1431–1438. doi: 10.1053/gast.2000.20844
  • Kim B, Park S, Jee CY, et al. An earthworm-like locomotive mechanism for capsule endoscopes. IEEE/RSJ Int Conf Intell Robots Syst; Edmonton, AB, Canada. 2005. p. 2997–3002.
  • Kusuda Y. A further step beyond wireless capsule endoscopy. Sens Rev. 2005;25(4):259–260. doi: 10.1108/02602280510620105
  • Hockstein NG, Gourin CG, Faust RA, et al. A history of robots: from science fiction to surgical robotics. J Robot Surg. 2007;1(2):113–118. doi: 10.1007/s11701-007-0021-2
  • Taylor RH, Menciassi A, Fichtinger G, et al. Medical robotics and computer-integrated surgery. Berlin, Heidelberg: Springer; 2008. p. 1199–1222.
  • Butter M, Rensma A, van Boxsel J, et al. Robotics for healthcare - final report. European Commission EC. 2008;5(1):12.
  • Pan G, Wang L. Swallowable wireless capsule endoscopy: progress and technical challenges. Gastroenterol Res Pract. 2012;2012:1–9. doi: 10.1155/2012/841691
  • Swain P, Toor A, Volke F, et al. Remote magnetic manipulation of a wireless capsule endoscope in the esophagus and stomach of humans (with videos). Gastrointest Endosc. 2010;71(7):1290–1293. doi: 10.1016/j.gie.2010.01.064
  • Iddan G, Meron G, Glukhovsky A, et al. Wireless capsule endoscopy. Nature. 2000;405(6785):417–418. doi: 10.1038/35013140
  • Moglia A, Menciassi A, Dario P, et al. Capsule endoscopy: progress update and challenges ahead. Nat Rev Gastroenterol Hepatol. 2009;6(6):353–361. doi: 10.1038/nrgastro.2009.69
  • Koulaouzidis A, Rondonotti E, Karargyris A. Small-bowel capsule endoscopy: a ten-point contemporary review. World J Gastroenterol. 2013;19(24):3726–3746. doi: 10.3748/wjg.v19.i24.3726
  • Ciuti G, Menciassi A, Dario P. Capsule endoscopy: from current achievements to open challenges. IEEE Rev Biomed Eng. 2011;4:59–72. doi: 10.1109/RBME.2011.2171182
  • Toennies JL, Tortora G, Simi M, et al. Swallowable medical devices for diagnosis and surgery: the state of the art. Proc Inst Mech Eng C: J Mech Eng Sci. 2010;224(7):1397–1414. doi: 10.1243/09544062JMES1879
  • Wang J, Zhang X-M, Han Q-L. Event-triggered generalized dissipativity filtering for neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst. 2016;27(1):77–88. doi: 10.1109/TNNLS.2015.2411734
  • Zhou L, She J, Zhang X-M, et al. Performance enhancement of RCS and application to tracking control of chuck-workpiece systems. IEEE Trans Ind Electron. 2020;67(5):4056–4065. doi: 10.1109/TIE.2019.2921272
  • Zhou L, She J, Zhou S. Robust H∞ control of an observer-based repetitive-control system. J Franklin Inst. 2018;355(12):4952–4969. doi: 10.1016/j.jfranklin.2018.05.024
  • Zhang B, Han Q, Zhang X, et al. Sliding mode control with mixed current and delayed states for offshore steel jacket platforms. IEEE Trans Control Syst Technol. 2014;22(5):1769–1783. doi: 10.1109/TCST.2013.2293401
  • Tong D, Rao P, Chen Q, et al. Exponential synchronization and phase locking of a multilayer Kuramoto-oscillator system with a pacemaker. Neurocomputing. 2018;308:129–137. doi: 10.1016/j.neucom.2018.04.067
  • Gauthier JP, Hammouri H, Othman S. A simple observer for nonlinear systems applications to bioreactors. IEEE Trans Automat Contr. 1992;37(6):875–880. doi: 10.1109/9.256352
  • Zhang J, Xia J, Sun W, et al. Finite-time tracking control for stochastic nonlinear systems with full state constraints. Appl Math Comput. 2018;338(1):207–220. doi: 10.1016/j.amc.2018.05.040
  • Tong D, Chen Q, Zhou W, et al. Multi-delay-dependent exponential synchronization for neutral-type stochastic complex networks with markovian jump parameters via adaptive control. Neural Process Lett. 2019;49(3):1611–1628. doi: 10.1007/s11063-018-9891-8
  • Chen Q, Tong D, Zhou W, et al. Adaptive exponential state estimation for markovian jumping neural networks with Multi-delays and Lévy Noises. Circuits Syst Signal Process. 2019;38(7):3321–3339. doi: 10.1007/s00034-018-1004-4
  • Tong D, Zhang L, Zhou W, et al. Asymptotical synchronization for delayed stochastic neural networks with uncertainty via adaptive control. Int J Control Autom Syst. 2016;14(3):706–712. doi: 10.1007/s12555-015-0077-0
  • Li H, Shi P, Yao D. Adaptive sliding-mode control of Markov jump nonlinear systems with actuator faults. IEEE Trans Automat Contr. 2017;62(4):1933–1939. doi: 10.1109/TAC.2016.2588885
  • Zhang Q, Wang C, Su X, et al. Observer-based terminal sliding mode control of non-affine nonlinear systems: finite-time approach. J Franklin Inst. 2018;355(16):7985–8004. doi: 10.1016/j.jfranklin.2018.08.018
  • Hua C, Li K, Li Y, et al. Decentralized adaptive tracking quantized control for interconnected pure feedback time delay nonlinear systems. J Franklin Inst. 2018;355(5):2313–2328. doi: 10.1016/j.jfranklin.2017.12.040
  • Wang Y, Tong D, Chen Q, et al. Exponential synchronization of chaotic systems with stochastic perturbations via quantized feedback control. Circuits Syst Signal Process. 2020;39(1):474–491. doi: 10.1007/s00034-019-01167-1
  • Yan W, Tong D, Chen Q, et al. Adaptive state estimation of stochastic delayed neural networks with fractional brownian motion. Neural Process Lett. 2019;50(2):2007–2020. doi: 10.1007/s11063-018-9960-z
  • Tong D, Chen Q. Delay and its time-derivative-dependent model reduction for neutral-type control system. Circuits Syst Signal Process. 2017;36(6):2542–2557. doi: 10.1007/s00034-016-0411-7
  • Xia J, Zhang J, Sun W, et al. Finite-time adaptive fuzzy control for nonlinear systems with full state constraints. IEEE Trans Syst Man Cybern Syst. 2019;49(7):1541–1548. doi: 10.1109/TSMC.2018.2854770
  • Xia J, Zhang J, Feng J, et al. Command filter-based adaptive fuzzy control for nonlinear systems with unknown control directions. IEEE Trans Syst Man Cybern Syst. 2021;51(3):1945–1953.
  • Martinez-Guerra R, Yu W. Chaotic synchronization and secure communication via sliding-mode observer. Int J Bifurcat Chaos. 2008;18(1):235–243. doi: 10.1142/S0218127408020264
  • Liu J, Gao Y, Su X, et al. Disturbance-observer-based control for air management of PEM fuel cell systems via sliding mode technique. IEEE Trans Control Syst Technol. 2019;27(3):1129–1138. doi: 10.1109/TCST.2018.2802467
  • Kazemi R, Janbakhsh AA. Nonlinear adaptive sliding mode control for vehicle handling improvement via steer-by-wire. Int J Automot Technol. 2010;11(3):345–354. doi: 10.1007/s12239-010-0043-z
  • Mohammed I, Abdulla A. Design of optimised linear quadratic regulator for capsule endoscopes based on artificial bee colony tuning algorithm. Int J Eng Model. 2018;31(1–2):77–98.
  • Chen D, Hue C, Wang L, et al. Active actuation system of wireless capsule endoscope based on magnetic. 2007 IEEE Int Conf Robot Biomim ROBIO; Sanya, China. 2007. p. 99–103.
  • Chi M, Zhang J, Liu R, et al. Coupled steering control of a low torsional torque capsule robot in the intestine. Mechatronics. 2021;77:102596. doi: 10.1016/j.mechatronics.2021.102596
  • Liao Z, Hou X, Lin-Hu E, et al. Accuracy of magnetically controlled capsule endoscopy, compared with conventional gastroscopy, in detection of gastric diseases. Clin Gastroenterol Hepatol. 2016;14(9):1266–1273. doi: 10.1016/j.cgh.2016.05.013
  • Diller E, Giltinan J, Lum G, et al. Six-degrees-of-freedom remote actuation of magnetic microrobots. Int J Rob Res. 2015;35(1–3):114–128. doi: 10.1177/0278364915583539
  • Borer R, Sengul A, Kratochvil B, et al. OctoMag: An Electromagnetic System for 5-DOF wireless micromanipulation. IEEE Trans Robot. 2010;26(6):1006–1017. doi: 10.1109/TRO.2010.2073030
  • Carpi F, Pappone C. Magnetic robotic manoeuvring of gastrointestinal video capsules: preliminary phantom tests. Biomed Pharmacother. 2008;62(8):546–549. doi: 10.1016/j.biopha.2008.07.057
  • Lee C, Choi H, Go G, et al. Active locomotive intestinal capsule endoscope (ALICE) system: a prospective feasibility study. EEE/ASME Trans Mechatron. 2015;20(5):2067–2074. doi: 10.1109/TMECH.2014.2362117
  • Lee C, Choi H, Go G, et al. Helical motion and 2D locomotion of magnetic capsule endoscope using precessional and gradient magnetic field. 2014 5th IEEE RAS EMBS Int Conf Biomed Robot Biomechatronics BioRob; Sao Paulo, Brazil. 2014. p. 1063–1067.
  • Pawashe C, Floyd S, Sitti M. Modeling and experimental characterization of an untethered magnetic micro-robot. Int J Rob Res. 2009;28(8):1077–1094. doi: 10.1177/0278364909341413
  • Floyd S, Pawashe C, Sitti M. An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces. 2008 IEEE Int Conf Robot Autom; Pasadena, CA, USA. 2008. p. 419–424.
  • Hosseini S, Mehrtash M, Khamesee MB. Design, fabrication and control of a magnetic capsule-robot for the human esophagus. Microsyst Technol. 2011;17(5–7):1145–1152. doi: 10.1007/s00542-011-1231-0
  • Zhang Y, Wang D, Ruan X, et al. Control strategy for multiple capsule robots in intestine. Sci China Technol Sci. 2011;54(11):3098–3108. doi: 10.1007/s11431-011-4483-0
  • Mousa A, Feng L, Dai Y, et al. Self-driving 3-legged crawling prototype capsule robot with orientation controlled by external magnetic field. Proc 1st WRC Symp Apdv Robot Autom; Beijing, China. 2018. p. 243–248.
  • Hu H, Yang X, Song L, et al. High position accuracy and 5 degree freedom magnetic driven capsule robot. 2019 WRC Symp Adv Robot and Autom SARA. 2019; p. 19–24.
  • Guo J, Bao Z, Fu Q, et al. Design and implementation of a novel wireless modular capsule robotic system in pipe. Med Biol Eng Comput. 2020;58(10):2305–2324. doi: 10.1007/s11517-020-02205-w
  • Jizhong L, Baolei W, Liangbo L, et al. Design of wireless drive and control system for capsule micro-robot. Proc 2011 Int Conf Electron Mech Eng Info Technol; Harbin, China. 2011:2324–2327.
  • Ye B, Sun Z, Peng J, et al. Fabrication of a novel handheld actuator for use in wireless capsule endoscope. 2013 14th. Int Conf Electron Packag Technol; Dalian, China. 2013. p. 1240–1242.
  • Tewari A. Modern control design with Matlab and SIMULINK. 1st ed. JWS LTD. 2002. p. 520.
  • Hasbullah F, Faris W. A comparative analysis of LQR and fuzzy logic controller for active suspension using half car model. 2010 11thInt Conf Control Autom Robot Vis; Singapore. 2010. p. 2415–2420.
  • Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim. 2007;39(3):459–471. doi: 10.1007/s10898-007-9149-x
  • Kennedy J, Eberhart R. Particle swarm optimization. Proc ICNN’95 – Int Conf Neural Netw; Perth, WA, Australia. 1995. p. 1942–1948.
  • Robandi I, Nishimori K, Nishimura R, et al. Optimal feedback control design using genetic algorithm in multimachine power system. Int J Electr Power Energy Syst. 2001;23(4):263–271. doi: 10.1016/S0142-0615(00)00062-4
  • Srinivasan D, Seow TH. Particle swarm inspired evolutionary algorithm (PS-EA) for multiobjective optimization problems. 2003 Congr Evol Comput CEC ’03; Canberra, ACT, Australia. 2003; 4:2292–2297.
  • Yurtkuran A, Emel E. An enhanced artificial bee colony algorithm with solution acceptance rule and probabilistic multisearch. J Comput Intell neurosci. 2016;2016:1–13. doi: 10.1155/2016/8085953
  • Ohta H, Kawashima M. Technical feasibility of patient-friendly screening and treatment of digestive disease by remote control robotic capsule endoscopes via the Internet. Annu Int Conf IEEE Eng Med Biol Soc; Chicago, IL, USA. 2014. p. 7001–7004.
  • Zhang Y, Bai J, Chi M, et al. Optimal control of a universal rotating magnetic vector for petal-shaped capsule robot in curve environment. China J Mech Eng. 2014;27(5):880–889. doi: 10.3901/CJME.2014.0619.114
  • Zhang Y, Wang N, Du C, et al. Control theorem of a universal uniform-rotating magnetic vector for capsule robot in curved environment. Sci China Tehnol Sci. 2013;56(2):359–368. doi: 10.1007/s11431-012-5088-y
  • Zhang Y, Su Z, Chi M, et al. Magnitude and orientation error correction of a superimposed spatial universal rotating magnetic vector. IEEE Trans Magn. 2016;52(5):1–9. doi: 10.1109/TMAG.2016.2517598
  • Hosney A, Klingner A, Misra S, et al. Propulsion and steering of helical magnetic microrobots using two synchronized rotating dipole fields in three-dimensional space. In: 2015 IEEE/RSJ Int Conf Intell Robot Syst IROS; Hamburg, Germany. 2015. p. 1988–1993.
  • Ye X, Hasson C, Yoon WJ, et al. Design of a steering mechanism for a tethered capsule endoscope. Proc IEEE Int Conf Cybern Intell Syst CIS Robot Autom Mechatron RAM; Siem Reap, Cambodia. 2015. p. 234–238.
  • Chernousko F. On the motion of a body containing a movable internal mass. Dokl Phys. 2005;50(11):593–597. doi: 10.1134/1.2137795
  • Chernousko F. Analysis and optimization of the motion of a body controlled by a movable internal mass. J Appl Math Mech. 2006;70(6):915–941.
  • Figurina T. Optimal control of the motion of a two-body system along a straight line. J Comput Syst Sci Int. 2007;46(2):227–233. doi: 10.1134/S1064230707020086
  • Bolotnik N, Figurina T. Optimal control of the rectilinear motion of a rigid body on a rough plane my means of the motion of two internal masses. J Appl Math Mech. 2008;72(2):126–135. doi: 10.1016/j.jappmathmech.2008.04.013
  • Egorov A, Zakharova O. The energy-optimal motion of a vibration-driven robot in a resistive medium. J Appl Math Mech. 2010;74(4):443–451. doi: 10.1016/j.jappmathmech.2010.09.010
  • Li H, Furuta K, Chernousko F. Motion generation of the capsubot using internal force and static friction. In: Proc 45th IEEE Conf Decis Control; San Diego, CA, USA. 2006. p. 6575–6580.
  • Nunuparov A, Becker F, Bolotnik N, et al. Dynamics and motion control of a capsule robot with an opposing spring. Arch Appl Mech. 2019;89(10):2193–2208. doi: 10.1007/s00419-019-01571-8
  • Ivanov A, Sakharov A. Dynamics of a rigid body carrying moving masses and a rotor on a rough plane. Nelineinaya Dinamika (Russian J Nonlinear Dyn). 1994;2(2):164–168.
  • Liu Y, Páez Chávez J, Zhang J, et al. The vibro-impact capsule system in millimetre scale: numerical optimisation and experimental verification. Meccanica. 2020;55(1):885–902. doi: 10.1007/s11012-020-01237-8
  • Guo B, Ley E, Tian J, et al. Experimental and numerical studies of intestinal frictions for propulsive force optimisation of a vibro-impact capsule system. Nonlinear Dyn. 2020;101(1):65–83. doi: 10.1007/s11071-020-05767-4
  • Guo B, Liu Y, Birler R, et al. Self-propelled capsule endoscopy for small- bowel examination: proof-of-concept and model verification. Int J Mech Sci. 2020;174:105506. doi: 10.1016/j.ijmecsci.2020.105506
  • Lee N, Kamamichi N, Ishikawa J, et al. Positioning control of a capsule robot using sliding mode control. Proc 2009 IEEE int conf robot biomim. 2009; 19-23.
  • Tang P, Liang L, Guo Z, et al. Orthogonal optimal design of multiple parameters of a magnetically controlled capsule robot. Micromach. 2021;12(7):802. doi: 10.3390/mi12070802
  • Liao M, Zhang J, Liu Y, et al. Speed optimisation and reliability analysis of a self-propelled capsule robot moving in an uncertain frictional environment. Int J Mech Sci. 2022;221. doi: 10.1016/j.ijmecsci.2022.107156
  • Ivanov A. Analysis of an impact-driven capsule robot. Int J Nonlinear Mech. 2020;119:103257. doi: 10.1016/j.ijnonlinmec.2019.103257
  • Liu Y, Yu H, Yang TC. Analysis and control of a capsubot. Proc 17th World Congr Int Fed Automat Control. 2008;41(2):756–761. doi: 10.3182/20080706-5-KR-1001.00130
  • Zhang J, Tian J, Zhu D, et al. Design and experimental investigation of a vibro-impact self-propelled capsule robot with orientation control. 2022 int conf robot autom ICRA. Philadelphia, PA, USA. 2022.
  • Liu Y, Wiercigroch M, Pavlovskaia E, et al. Modelling of a vibro-impact capsule system. Int J Mech Sci. 2013;66:2–11. doi: 10.1016/j.ijmecsci.2012.09.012
  • Guo B, Liu Y, Prasad S. Modelling of capsule-intestine contact for a self-propelled capsule robot via experimental and numerical investigation. Nonlinear Dyn. 2019;98:3155–3167. doi: 10.1007/s11071-019-05061-y
  • SynDaverLabs. Small intestine. Cited 2018 Sep 5. Available from: https://syndaver.com/wp-content/uploads/2019/04/Tear-Sheet-130470-Small-Intestine.pdf.
  • Zhang C, Liu H, Tan R, et al. Modeling of velocity-dependent frictional resistance of a capsule robot inside an intestine. Tribol Lett. 2012;47(2):295–301. doi: 10.1007/s11249-012-9980-1
  • Kim JS, Sung IH, Kim YT, et al. Analytical model development for the prediction of the frictional resistance of a capsule endoscope inside an intestine. Proc Inst Mech Eng H J Eng Med. 2007;221(8):837–845. doi: 10.1243/09544119JEIM173
  • Zhou H, Alici G, Than TD, et al. Modeling and experimental investigation of rotational resistance of a spiral-type robotic capsule inside a real intestine. IEEE/ASME Trans Mechatron. 2013;18(5):1555–1562. doi: 10.1109/TMECH.2012.2208121
  • Chernousko F. The optimum rectilinear motion of a two-mass system. J Appl Math Mech. 2002;66(1):1–7. doi: 10.1016/S0021-8928(02)00002-3
  • Liu Y, Pavlovskaia E, Wiercigroch M, et al. Forward and backward motion control of a vibro-impact capsule system. Int J Mech Sci. 2015b;70:30–46. doi: 10.1016/j.ijnonlinmec.2014.10.009
  • Liu Y, Pavlovskaia E, Wiercigroch M. Experimental verification of the vibro-impact capsule model. Nonlinear Dyn. 2016;83(1–2):1029–1041. doi: 10.1007/s11071-015-2385-6
  • Jian X, Fang H. Improving performance: recent progress on vibration-driven locomotion systems. Nonlinear Dyn. 2019;98(4):2651–2669. doi: 10.1007/s11071-019-04982-y
  • Liu Y, Guo B, Prasad S. Resonance enhanced self-propelled capsule endoscopy for small bowel examination. Gut. 2019;68:A31.
  • Yamagata Y, Higuchi T. A micropositioning device for precision automatic assembly using impact force of piezoelectric elements. Proceedings of 1995 IEEE Int Conf Robot Autom; Nagoya, Japan. 1995;1:666–671.
  • Li H, Furuta K, Chernousko F. A pendulum-driven cart via internal force and static friction. Proc 2005 Int Conf Phys Control; Saint Petersburg, Russia. 2005. p. 15–17.
  • Liu Y, Yu H, Burrows B. Optimization and control of a pendulum-driven cart-pole system. Proc 2007 IEEE Int Conf on Netw Sens Control; London, UK. 2007. p. 151–156.
  • Yu H, Liu Y, Yang TC. Tracking control of a pendulum-driven cart-pole underactuated system. Proc 2007 IEEE Int Conf Syst Man Cybern; Montreal, Que. 2007.