66
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Surfactant assisted dip-coating method for deposition of polyethylmethacrylate-diamond coatings

& ORCID Icon
Pages 226-235 | Received 18 Jan 2023, Accepted 22 Jun 2023, Published online: 03 Jul 2023

References

  • Bociaga D, Sobczyk-Guzenda A, Szymanski W, et al. Mechanical properties, chemical analysis and evaluation of antimicrobial response of Si-DLC coatings fabricated on AISI 316 LVM substrate by a multi-target DC-RF magnetron sputtering method for potential biomedical applications. Appl Surf Sci. 2017;417:23–33. doi:10.1016/j.apsusc.2017.03.223
  • Bito K, Hasebe T, Maegawa S, et al. In vitro basic fibroblast growth factor (bFGF) delivery using an antithrombogenic 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer coated with a micropatterned diamond-like carbon (DLC) film. J Biomed Mater Res A. 2017;105:3384–3391. doi:10.1002/jbm.a.36201
  • Li H, Cao J, Wei Q, et al. Antifouling nanoporous diamond membrane for enhanced detection of dopamine in human serum. J Mater Sci. 2020;56:746–761. doi:10.1007/s10853-020-05344-5
  • Eshaghi A, Salehi M. Fabrication and characterization of optical: mechanical and chemical properties of diamond-like carbon thin film deposited on polymer substrate. Opt Quantum Electron. 2018;50. doi:10.1007/s11082-018-1683-x
  • Choudhury D, Morita T, Sawae Y, et al. A novel functional layered diamond like carbon coating for orthopedics applications. Diamond Relat Mater. 2016;61:56–69. doi:10.1016/j.diamond.2015.11.011
  • Salgueiredo E, Almeida F, Amaral M, et al. A multilayer approach for enhancing the erosive wear resistance of CVD diamond coatings. Wear. 2013;297:1064–1073. doi:10.1016/j.wear.2012.11.051
  • Voevodin A, Walck S, Zabinski J. Architecture of multilayer nanocomposite coatings with super-hard diamond-like carbon layers for wear protection at high contact loads. Wear. 1997;203:516–527. doi:10.1016/S0043-1648(96)07425-X
  • Booth L, Catledge SA, Nolen D, et al. Synthesis and characterization of multilayered diamond coatings for biomedical implants. Materials (Basel). 2011;4:857–868. doi:10.3390/ma4050857
  • Buchegger S, Schuster N, Stritzker B, et al. Multilayer diamond-like amorphous carbon coatings produced by ion irradiation of polymer films. Surf Coat Technol. 2017;327:42–47. doi:10.1016/j.surfcoat.2017.08.010
  • Roy RK, Lee KR. Biomedical applications of diamond-like carbon coatings: a review. J Biomed Mater Res B: Appl Biomater: Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater. 2007;83:72–84. doi:10.1002/jbm.b.30768
  • Huang H, Pierstorff E, Osawa E, et al. Protein-mediated assembly of nanodiamond hydrogels into a biocompatible and biofunctional multilayer nanofilm. ACS Nano. 2008;2:203–212. doi:10.1021/nn7000867
  • Branzoi IV, Iordoc M, Branzoi F, et al. Synthesis and characterization of high-voltage electrodeposited diamond-like carbon protective coating on TiAlV biomedical substrates. Surf Interface Anal. 2012;44:1193–1197. doi:10.1002/sia.4888
  • Lavrynenko SN, Mamalis AG, Starikova SL, et al. Diamond biocompatible coatings for medical implants. J Biol Phys Chem. 2016;16:70–74. doi:10.4024/04ST16A.jbpc.16.01
  • Gnanavel S, Ponnusamy S, Mohan L, et al. Electrochemical behavior of biomedical titanium alloys coated with diamond carbon in hanks’ solution. J Mater Eng Perform. 2018;27:1635–1641. doi:10.1007/s11665-018-3250-9
  • Garrett DJ, Saunders AL, McGowan C, et al. In vivo biocompatibility of boron doped and nitrogen included conductive-diamond for use in medical implants. J Biomed Mater Res B Appl Biomater. 2016;104:19–26. doi:10.1002/jbm.b.33331
  • Pandey PC, Shukla S, Pandey G, et al. Nanostructured diamond for biomedical applications. Nanotechnology. 2021;32:132001. doi:10.1088/1361-6528/abd2e7
  • Khalid A, Abraham A, Bai D, et al. Electrospun diamond-silk membranes for biosensing applications. Biophotonics Australas. 2019:2019. doi:10.1117/12.2539276
  • Liu X, Veldhuis S, Mathews R, et al. Dip coating of poly(ethyl methacrylate) and composites from solutions in isopropanol-water co-solvent. Colloids Surf, A. 2021;631. doi:10.1016/j.colsurfa.2021.127703
  • Baker K, Zhitomirsky I. Biomimetic approach to poly(ethyl methacrylate) solubilization,: deposition, and coating loading with functional biomaterials. Colloid Polym Sci. 2022;300:599–607. doi:10.1007/s00396-022-04971-5
  • Sreekantan S, Hassan M, Sundera Murthe S, et al. Biocompatibility and cytotoxicity study of polydimethylsiloxane (PDMS) and palm Oil fuel Ash (POFA) sustainable super-hydrophobic coating for biomedical applications. Polymers (Basel). 2020;12:3034. doi:10.3390/polym12123034
  • Cooperstein MA, Canavan HE. Assessment of cytotoxicity of (N-isopropyl acrylamide) and poly (N-isopropyl acrylamide)-coated surfaces. Biointerphases. 2013;8:19. doi:10.1186/1559-4106-8-19
  • Hadidi M, Bigham A, Saebnoori E, et al. Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical applications. Surf Coat Technol. 2017;321:171–179. doi:10.1016/j.surfcoat.2017.04.055
  • Farrokhi-Rad M. Electrophoretic deposition of titania nanostructured coatings with different porous patterns. Ceram Int. 2018;44:15346–15355. doi:10.1016/j.ceramint.2018.05.184
  • Farrokhi-rad M, Emamalipour S, Mohammadzadeh F, et al. Electrophoretic deposition of alginate coatings from different alcohol-water mixtures. Surf Eng. 2021;37:1176–1185. doi:10.1080/02670844.2020.1866794
  • Yu Q, Roberts MG, Pearce S, et al. Rodlike block copolymer micelles of controlled length in water designed for biomedical applications. Macromolecules. 2019;52:5231–5244. doi:10.1021/acs.macromol.9b00959
  • Cullis PS, Keene DJ, Zaman A, et al. Chemical stability of heparin, isopropanol, and ethanol line lock solutions. J Pediatr Surg. 2015;50:315–319. doi:10.1016/j.jpedsurg.2014.11.023
  • Wang Z, Zhitomirsky I. Deposition of organic-inorganic nanocomposite coatings for biomedical applications. Solids. 2022;3:271–281. doi:10.3390/solids3020019
  • Zhang M, Weng YJ, Zhang YQ. Accelerated desalting and purification of silk fibroin in a CaCl2-EtOH-H2O ternary system by excess isopropanol extraction. J Chem Technol Biotechnol. 2021;96:1176–1186. doi:10.1002/jctb.6629
  • Silva SS, Oliveira NM, Oliveira MB, et al. Fabrication and characterization of Eri silk fibers-based sponges for biomedical application. Acta Biomater. 2016;32:178–189. doi:10.1016/j.actbio.2016.01.003
  • Pruett LJ, Jenkins CH, Singh NS, et al. Heparin microislands in microporous annealed particle scaffolds for accelerated diabetic wound healing. Adv Funct Mater. 2021;31:2104337. doi:10.1002/adfm.202104337
  • Marchant R, Banat IM. Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol. 2012;30:558–565. doi:10.1016/j.tibtech.2012.07.003
  • Guo Y-P, Hu Y-Y. Solubilization of moderately hydrophobic 17α-ethinylestradiol by mono-and di-rhamnolipid solutions. Colloids Surf, A. 2014;445:12–20. doi:10.1016/j.colsurfa.2013.12.076
  • Chen J, Wu Q, Hua Y, et al. Potential applications of biosurfactant rhamnolipids in agriculture and biomedicine. Appl Microbiol Biotechnol. 2017;101:8309–8319. doi:10.1007/s00253-017-8554-4
  • Vatsa P, Sanchez L, Clement C, et al. Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int J Mol Sci. 2010;11:5095–5108. doi:10.3390/ijms11125095
  • Kowalska A, Kalinowska-Lis U. 18β-Glycyrrhetinic acid: its core biological properties and dermatological applications. Int J Cosmet Sci. 2019;41:325–331. doi:10.1111/ics.12548
  • Bailly C, Vergoten G. Glycyrrhizin: an alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol Ther. 2020;214:107618. doi:10.1016/j.pharmthera.2020.107618
  • Pang X, Imin P, Zhitomirsky I, et al. Amperometric detection of glucose using a conjugated polyelectrolyte complex with single-walled carbon nanotubes. Macromolecules. 2010;43:10376–10381. doi:10.1021/ma101862b
  • Li J, Zhitomirsky I. Cathodic electrophoretic deposition of manganese dioxide films. Colloids Surf, A. 2009;348:248–253. doi:10.1016/j.colsurfa.2009.07.035
  • Shojaeiarani J, Bajwa DS, Chanda S. Cellulose nanocrystal based composites: a review. Composites Part C: Open Access. 2021;5:100164. doi:10.1016/j.jcomc.2021.100164
  • Benega MAG, Silva WM, Schnitzler MC, et al. Improvements in thermal and mechanical properties of composites based on epoxy-carbon nanomaterials-a brief landscape. Polym Test. 2021;98:107180. doi:10.1016/j.polymertesting.2021.107180
  • Baker K, Sikkema R, Liang W, et al. Multifunctional properties of commercial bile salts for advanced materials engineering. Adv Eng Mater. 2021;23:2001261. doi:10.1002/adem.202001261
  • Baker K, Sikkema R, Zhitomirsky I. Application of bile acids for biomedical devices and sensors. Med Devices Sens. 2020;3:e10119. doi:10.1002/mds3.10119

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.