129
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Enamel (glassy) coatings for steel protection against high temperature corrosion

ORCID Icon &
Pages 145-169 | Received 09 Feb 2023, Accepted 27 Jun 2023, Published online: 06 Jul 2023

References

  • Heidersbach R. Metallurgy and corrosion control in oil and gas production. Hoboken, NJ: Wiley; 2011.
  • Papavinasam S. Corrosion control in oil and gas industry. Waltham, MA: Elsevier; 2013.
  • Popoola LT, Grema AS, Latinwo GK, et al. Corrosion problems during oil and gas production. Int J Ind Chem. 2013;4(article 35).
  • Almeida TDC, Bandeira MCE, Moreira RM, et al. New insights on the role of CO2 in the mechanism of carbon steel corrosion. Corros Sci. 2017;120:239–250. doi:10.1016/j.corsci.2017.02.016
  • Singer M, Brown B, Camacho A, et al. Combined effect of carbon dioxide, hydrogen sulfide, and acetic acid on bottom-of-the-line corrosion. Corros. 2011;67(1):015004-1–015004-16. doi:10.5006/1.3543715
  • Choi Y-S, Nesic S, Ling S. Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions. Electrochim Acta. 2011;56(4):1752–1760. doi:10.1016/j.electacta.2010.08.049
  • Mundhenk N, Huttenloch P, Kohl T, et al. Corrosion and scaling as interrelated phenomena in an operating geothermal power plant. Corros Sci. 2013;70:17–28. doi:10.1016/j.corsci.2013.01.003
  • Karlsdottir SN. Corrosion, scaling and material selection in geothermal power production. In: A Sayigh, editor. Comprehensive renewable energy.vol. 7, Amsterdam: Elsevier; 2012. p. 241–259.
  • Nogara J, Zarrouk SJ. Corrosion in geothermal environment: part 1-2. Renew Sustain Energy Rev 2018;82:1333–1363. doi:10.1016/j.rser.2017.06.098
  • Andrews AI. Porcelain enamels: the preparation, application and properties of enamels. 2nd ed. Champaign (IL): Garrard Press; 1961.
  • Ubertazzi A, Wojciechowski N. Smalto porcellano – vitreous enamel. Milano: Ulrico Hoepli Editore; 2002.
  • Kuchinski FA. Corrosion resistant thick films by enamelling. In: JB Wachtman, RA Haber, editor. Ceramic films and coatings. Park Ridge, NJ: Noyes Publ; 1993. p. 77–130.
  • Rossi S, Russo F, Calovi M. Durability of vitreous enamel coatings and their resistance to abrasion, chemicals, and corrosion: a review. J Coat Technol Res. 2021;18(1):39–52. doi:10.1007/s11998-020-00415-3
  • Ryabova AV, Yatsenko EA, Zubekhin AP, et al. One-layer low-melting white glass-enamel coatings for household gas apparatus. Glass Ceram. 1997;1:29–30.
  • Goetcheus DR. Porcelain enamels as a protective coating for hot water tanks. J Amer Ceram Soc. 2006;25:164–168. doi:10.1111/j.1151-2916.1942.tb15574.x
  • Fan L, Tang F, Reis ST, et al. Corrosion resistances of steel pipe internally coated with enamel. Corrosion. 2017;73(11):1335–1345. doi:10.5006/2497
  • Fan L, Reis ST, Chen G, et al. Corrosion resistance of pipeline steel with damaged enamel coating and cathodic protection. Coatings. 2018;8:185. doi:10.3390/coatings8050185
  • Collins MA. Atlas of enamel defects. Astwood Bank, Redditch: Publ. IVE; 1995.
  • Mazzuca AR. Porcelain enamel surface defects. In: WD Faust, editor. Proc. Of 62nd porcelain enamel inst. techn. forum. Ceram. Eng. Sci. Proc., The Amer. Ceram. Soc., chapter 21; 2000. p. 131–135.
  • Zucchelli A, Dignatici M, Montorsi M, et al. Characterization of vitreous enamel-steel interface by using hot stage ESEM and nano-indentation techniques. J Eur Ceram Soc. 2012;32:2243–2251. doi:10.1016/j.jeurceramsoc.2012.03.008
  • Iziksacan O, Yucel O, Yesilcubuk A. Vitreous enamel coating surface defects and evaluation of the causes. Int Adv Res J Sci Eng Technol. 2018;5:5. doi:10.17148/IARJSET.2018.582
  • Paparazzo E, Fierro G, Ingo GM, et al. Microchemistry and mechanisms of adherence in steel/enamel interfaces. J Amer Ceram Soc. 1988;71:C-494–C-497. doi:10.1111/j.1151-2916.1988.tb05816.x
  • United States Steel Corp. (2016). VITRENAMEL, Product Bulletin.
  • Nippon Steel Corp. (2020). Steel Sheets for Vitreous Enameling, Product Bulletin.
  • SRJ Steel LLC. Product Bulletin, The Porcelain Enamel Institute, Inc.
  • Liu Z, Li W, Shao X, et al. An ultra-low-carbon steel with outstanding fish-scaling resistance and cold formability for enameling applications. Metal Mater Trans. 2019;50:1805–1815. doi:10.1007/s11661-018-05101-z
  • Ryabova AV, Yatsenko EA, Klimova LV. Researching of steel grade influence on structure and properties of silicate-enamel coatings of pipelines. Solid State Phenom. 2020;299:778–786. doi:10.4028/www.scientific.net/SSP.299.778
  • Shieu FS, Lin LKC, Wong JC. Microstructure and adherence of porcelain enamel to low carbon steel. Ceram Int. 1999;25(1):27–34. doi:10.1016/S0272-8842(97)00080-1
  • Bodaghi M, Davarpanah A. The influence of cobalt on the microstructure and adherence characteristics of enamel on steel sheet. Proc Appl Ceram. 2011;5(4):215–222. doi:10.2298/PAC1104215B
  • Barcova K, Mashlan M, Zboril R, et al. Phase composition of steel-enamel interfaces: effects of chemical pre-treatment. Surf Coat Technol. 2006;201(3-4):1836–1844. doi:10.1016/j.surfcoat.2006.03.015
  • Bachar A, Mabrouk A, Meneses DDS, et al. Effect of thermal treatment on the property of enamel coating on steel substrate. J Mater Envir Sci. 2017;8(11):3884–3891.
  • Rossi S, Calovi M, Velez D, et al. Microstructural analysis and surface modification of a vitreous enamel modified with corundum particles. Adv Eng Mater. 2019;21:1900231. doi:10.1002/adem.201900231
  • Nakazato Y, Kuguminato H, Soeda N, et al. A study of bubble structures in porcelain enamel. Trans ISIJ. 1980;20:1–8. doi:10.2355/isijinternational1966.20.1
  • Samiee L, Sarpoolaky H, Mirhabibi A. Influence of bubble structure on adherence and chemical durability of porcelain enamel. Adv Appl Ceram. 2008;107(1):27–33. doi:10.1179/174367607X202654
  • Reis ST, Koenigstein M, Fan L, et al. The effect of silica on the properties of vitreous enamels. Materials (Basel). 2019;12:248. doi:10.3390/ma12020248
  • Medvedovski E. Advanced iron boride coatings to enhance corrosion resistance of steels in geothermal power generation. Adv Appl Ceram. 2020;119(8):462–481. doi:10.1080/17436753.2020.1830359
  • Evans AG. Structural reliability: a processing-dependent phenomenon. J Amer Ceram Soc. 1982;65(3):127–137. doi:10.1111/j.1151-2916.1982.tb10380.x
  • Nickel KL, Siepel B. Corrosion penetration monitoring of advanced ceramics in hot aqueous fluids. Mater Res. 2004;7(1):125–133. doi:10.1590/S1516-14392004000100017
  • Medvedovski E. Influence of corrosion and mechanical loads on advanced ceramic components. Ceram Int. 2013;39:2723–2741. doi:10.1016/j.ceramint.2012.09.040
  • Medvedovski E. Advanced ceramics and coatings for erosion-related applications in mineral and oil and gas production: a technical review. Int J Appl Ceram Technol. 2023;20(2):612-659. doi:10.1111/ijac.14240.
  • Saunders SRJ, Monteiro M, Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapors: a review. Progr Mater Sci. 2008;53:775–837. doi:10.1016/j.pmatsci.2007.11.001
  • Hansson AN, Danielsen HK, Grumsen FB, et al. Microstructural investigation of the oxide formed on TP347H FG during long-term steam oxidation. Mater Corros. 2010;61(8):665–675. doi:10.1002/maco.200905439
  • Asteman H, Svensson JE, Johansson LG. Oxidation of 310 steel in H2O/O2 mixtures at 600(C). Corros Sci. 2002;44:2635–2649. doi:10.1016/S0010-938X(02)00056-2
  • Young DJ, Print BA. Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor. Oxid Met. 2006;66(3/4):137–153. doi:10.1007/s11085-006-9030-1
  • Bsat S, Huang X. Corrosion behaviour of 310 steel in H2O/O2 mixtures at 600°C: the effect of water-vapour-enhanced chromium evaporation. Oxid Met. 2015;84:621–631. doi:10.1007/s11085-015-9591-y
  • Hansson AN, Montgomery M, Somers MAJ. Oxidation of X20 in water vapour: the effect of temperature and oxygen partial pressure. Oxid Met. 2009;71(3-4):201–218. doi:10.1007/s11085-009-9138-1
  • Gesmundo F, Young DJ, Roy SK. The high temperature corrosion of metals in sulfidizing – oxidizing environments: a critical review. High Temp Mater Proc. 1989;8(3):140–190. doi:10.1515/HTMP.1989.8.3.149
  • Nakagawa K, Kitagawa M, Tumita Y, et al. High temperature corrosion of water wall tube in coalfired combustion gases. J De Phys IV. 1993;3:787–796. doi:10.1051/jp4:1993982
  • Yuan J, Zhu K, Jiang J, et al. Corrosion behavior of Cr-bearing steels in CO2-O2-H2O multi-thermal-fluid environment. Mater Res Expr. 2020;7:106518. doi:10.1088/2053-1591/abbfbc
  • Kitaygorodsky II. Glass and glass formation. Moscow: Gosstroyizdat; 1950; (in Russian).
  • Budnikov PP, Kharitonov FY. Ceramic materials for aggressive environments. Moscow: Stroyizdat; 1971; (in Russian).
  • Baucke FGK. Corrosion of glasses and its significance for glass coating. Electrochim Acta. 1994;39(8-9):1223–1228. doi:10.1016/0013-4686(94)E0040-7
  • Jantzen CM, Brown KG, Pickett JB. Durable glass for thousands of years. Int J Appl Glass Sci. 2010;25:38–62. doi:10.1111/j.2041-1294.2010.00007.x
  • Bunker BC. Molecular mechanisms for corrosion of silica and silicate glasses. Non-Cryst Solids. 1994;179:300–308. doi:10.1016/0022-3093(94)90708-0
  • Frankel GS, Vienna JD, Lian J, et al. A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals. Mater Degrad. 2018;15:1–17. doi:10.1038/s41529-018-0037-2.
  • Sheth N, Ngo D, Banerjee J, et al. Probing hydrogen-bonding interactions of water molecules adsorbed on silica, sodium calcium silicate, and calcium aluminosilicate glasses. J Phys Chem C. 2018;122:17792–17801. doi:10.1021/acs.jpcc.8b04233
  • Kapoor S, Youngman RE, Zakharchuk K, et al. Structural and chemical approach toward understanding the aqueous corrosion of sodium aluminoborate glasses. J Phys Chem B. 2018;122(48):10913–10927. doi:10.1021/acs.jpcb.8b06155
  • Oelkers EH. General kinetic description of multioxide silicate mineral and glass dissolution. Geochim Cosmochim Acta. 2001;65:3703–3719. doi:10.1016/S0016-7037(01)00710-4
  • Boissonnet G, Rzad E, Troncy R, et al. High temperature oxidation of enamel coated low-alloy steel 16Mo3 in water vapor. Coatings. 2023;13:342. doi:10.3390/coatings13020342

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.