64
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

CuCr2O4 particle growth and evolution across sol–gel routes and calcination profiles

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 197-214 | Received 31 Mar 2023, Accepted 01 Jul 2023, Published online: 18 Jul 2023

References

  • Ho CK, Christian JM, Romano D, et al. Characterization of particle flow in a free-falling solar particle receiver. ASME J Sol Energy Eng. 2017;139(2):021011, doi:10.1115/1.4035258
  • Hall A, Ambrosini A, Ho C. Solar selective coatings for concentrating solar power central receivers. Adv Mater Processes. 2012;170:28–32. doi:10.31399/asm.amp.2012-01.p028
  • Harzallah R, Larnicol M, Leclercq C, et al. Development of high performances solar absorber coatings. AIP Conf Proc. 2019;2126:030026, doi:10.1063/1.5117538
  • Jackson GS, Imponenti L, Albrecht KJ, et al. Inert and reactive oxide particles for high-temperature thermal energy capture and storage for concentrating solar power. ASME J Sol Energy Eng. 2019;141(2):021016), doi:10.1115/1.4042128
  • Rubin EB, Chen Y, Chen R. Optical properties and thermal stability of Cu spinel oxide nanoparticle solar absorber coatings. Sol Energy Mater Sol Cells. 2019;195:81–88. doi:10.1016/j.solmat.2019.02.032
  • Geng Q, Zhao X, Gao X, et al. Low-temperature combustion synthesis of CuCr2O4 spinel powder for spectrally selective paints. J Sol-Gel Sci Technol. 2012;61:281–288. doi:10.1007/s10971-011-2625-2
  • Prasad R, Singh P. Applications and preparation methods of copper chromite catalysts: a review. Bull Chem React Eng Catal. 2011;6(2):63–113. doi:10.9767/bcrec.6.2.829.63-113
  • Habibi MH, Fakhri F. Sol–gel combustion synthesis and characterization of nanostructure copper chromite spinel. J Therm Anal Calorim. 2014;115:1329–1333. doi:10.1007/s10973-013-3480-x
  • Ma P, Geng Q, Liu G. Photothermal conversion applications of the transition metal (Cu, Mn, Co, Cr, and Fe) oxides with spinel structure. In: Seehra Mohindar, editor. Magnetic spinels – synthesis, properties and applications. Rijeka: IntechOpen; 2017. doi:10.5772/67210
  • Hosseini SG, Abazari R, Gavi A. Pure CuCr2O4 nanoparticles: synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sci. 2014;37:72–79. doi:10.1016/j.solidstatesciences.2014.08.014
  • Li W, Cheng H. Synthesis and characterization of Cu-Cr-O nanocomposites. J Cent South Univ Technol. 2007;14:291–295. doi:10.1007/s11771-007-0057-5
  • Shafqat MB, Ali M, Atiq S, et al. Structural, morphological and dielectric investigation of spinel chromite (XCr2O4, X = Zn, Mn, Cu & Fe) nanoparticles. J Mater Sci: Mater Electron. 2019;30; doi:10.1007/s10854-019-02111-4
  • Chen W-F, Mofarah SS, Hanaor DAH, et al. Enhancement of Ce/Cr codopant solubility and chemical homogeneity in TiO2 nanoparticles through sol–gel versus Pechini syntheses. Inorg Chem. 2018;57(12):7279–7289. doi:10.1021/acs.inorgchem.8b00926
  • Kunduraci M, Amatucci GG. The effect of particle size and morphology on the rate capability of 4.7 V LiMn1.5+δNi0.5−δO4 spinel lithium-ion battery cathodes. Electrochim Acta. 2008;53(12):4193–4199. doi:10.1016/j.electacta.2007.12.057
  • Pechini MP. Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. United States patent US 3,330,697, 1967 Jul 11.
  • Anki MMT, Benoit L. Optical constants of various chromites as determined by Kramers–Kronig analysis. Appl Opt. 1996;35(9):1399–1403. doi:10.1364/AO.35.001399
  • Plantz PE. “Sample preparation guide.” 2020. [accessed 2017 May 1] available at https://www.microtrac.com/files/83443/sample-preparation-guide.pdf
  • Ghosh S, Divya D, Remani KC, et al. Growth of monodisperse nanocrystals of cerium oxide during synthesis and annealing. J Nanopart Res. 2010;12:1905–1911. doi:10.1007/s11051-009-9753-4
  • Teleki A, Wengeler R, Wengeler L, et al. Distinguishing between aggregates and agglomerates of flame-made TiO2 by high-pressure dispersion. Powder Technol. 2008;181(3):292–300. doi:10.1016/j.powtec.2007.05.016
  • Rahaman MN. Ceramic processing, 2nd ed. Boca Raton: CRC Press; 2017.
  • Liu Z, Wang G, Liu X, et al. Preparation of CuCrO2 and the photocatalytic properties of its composites. J Fuel Chem Technol. 2013;41(12):1473–1480. doi:10.1016/S1872-5813(14)60007-4
  • Ali RF, Gates BD. Synthesis of lithium niobate nanocrystals with size focusing through an Ostwald ripening process. Chem Mater. 2018;30(6):2028–2035. doi:10.1021/acs.chemmater.7b05282
  • Muche DNF, Marple MAT, Sen S, et al. Grain boundary energy, disordering energy and grain growth kinetics in nanocrystalline MgAl2O4 spinel. Acta Mater. 2018;149:302–311. doi:10.1016/j.actamat.2018.02.052
  • Kapadia CM, Leipold MH. The mechanism of grain growth in ceramics. Legacy CDMS. 1972. Document ID 19730023692.
  • Li J, Guo C, Ma Y, et al. Effect of initial particle size distribution on the dynamics of transient Ostwald ripening: a phase field study. Acta Mater. 2015;90:10–26. doi:10.1016/j.actamat.2015.02.030
  • Ting JM, Lin RY. Effect of particle size distribution on sintering. J Mater Sci. 1995;30:2382–2389. doi:10.1007/BF01184590
  • Hu H, Rath BB. On the time exponent in isothermal grain growth. Metall Mater Trans B. 1970;1:3181–3184. doi:10.1007/BF03038435
  • Lopez HF, Mendoza H. Temperature effects on the crystallization and coarsening of nano-CeO2 powders. Int Sch Res Notices. 2013;2013: 1–7. Article ID 208614. doi:10.1155/2013/208614
  • Wang S, Li D, Yang C, et al. A novel method for the synthesize of nanostructured MgFe2O4 photocatalysts. J Sol-Gel Sci Technol. 2017;84:169–179. doi:10.1007/s10971-017-4471-3
  • Danks AE, Hall SR, Schnepp Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater Horiz. 2016;3:91–112. doi:10.1039/C5MH00260E
  • Carstens S, Splith C, Enke D. Sol-gel synthesis of α-Al2O3 with enhanced porosity via dicarboxylic acid templating. Sci Rep. 2019;9:19982, doi:10.1038/s41598-019-56294-1
  • Tikkanen H, Suciu C, Wærnhus I, et al. Dip-coating of 8YSZ nanopowder for SOFC applications. Ceram Int. 2011;37(7):2869–2877. doi:10.1016/j.ceramint.2011.05.006
  • Schorne-Pinto J, Chartrand P, Barnabé A, et al. Thermodynamic and structural properties of CuCrO2 and CuCr2O4: experimental investigation and phase equilibria modeling of the Cu–Cr–O system. J Phys Chem C. 2021;125(27):15069–15084. doi:10.1021/acs.jpcc.1c04179
  • Benreguia N, Abdi A, Mahroua O, et al. Semiconducting and photoelectrochemical characterizations of CuCrO2 powder synthesized by sol-gel method. J Solid State Electrochem. 2018;22:2499–2506. doi:10.1007/s10008-018-3967-2
  • Krause M, Sonnenberg J, Munnik F, et al. Formation, structure, and optical properties of copper chromite thin films for high-temperature solar absorbers. Materialia. 2021;18:101156, doi:10.1016/j.mtla.2021.101156
  • Sathiskumar PS, Thomas CR, Madras G. Solution combustion synthesis of nanosized copper chromite and its use as a burn rate modifier in solid propellants. Ind Eng Chem Res. 2012;51(30):10108–10116. doi:10.1021/ie301435r
  • Galceran M, Pujol MC, Aguiló F, et al. Sol-gel modified Pechini method for obtaining nanocrystalline KRE(WO4)2 (RE = Gd and Yb). J Sol-Gel Sci Technol. 2007;42:79–88. doi:10.1007/s10971-006-1517-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.