178
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

A comprehensive review of modern engineered ceramics coatings for optimised resistance to wear and corrosion

ORCID Icon, , , , , , , , & show all
Pages 81-100 | Received 11 Mar 2023, Accepted 06 Jul 2023, Published online: 23 Jul 2023

References

  • Roy M. Protective hard coatings for tribological applications. In: Tyagi AK, Banerjee S, editors. Materials under extreme conditions. Amsterdam: Elsevier; 2017. p. 259–92. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128013007000085.
  • Healy KE, Hutmacher DW, Grainger DW, et al. Comprehensive biomaterials ii. Amsterdam: Elsevier; 2017: 4864 p.
  • Wang K, Jia J, Chen W, et al. Investigation of corrosion and wear properties of Si3N4-hBN ceramic composites in artificial seawater. Tribol Int. 2021;164:107235, doi:10.1016/j.triboint.2021.107235.
  • Moerman F, Partington E. Materials of construction for food processing equipment and services: requirements, strengths and weaknesses. J Hyg Eng Des. 2014;6:10–37.
  • Wolfe DE, DeSalle CM, Ryan CJ, et al. Influence of processing on the microstructural evolution and multiscale hardness in titanium carbonitrides (TiCN) produced via field assisted sintering technology. Materialia. 2023;27:101682. doi:10.1016/j.mtla.2023.101682.
  • Pulci G, Tului M, Tirillò J, et al. High temperature mechanical behavior of UHTC coatings for thermal protection of re-entry vehicles. J Therm Spray Tech. 2011;;20(1–2):139–44. doi:10.1007/s11666-010-9578-9.
  • Li W, Yang X, Wang S, et al. Research and prospect of ceramics for automotive disc-brakes. Ceram Int. 2021;47(8):10442–63. doi:10.1016/j.ceramint.2020.12.206.
  • Kaya H. The application of ceramic-matrix composites to the automotive ceramic gas turbine. Compos Sci Technol. 1999;59(6):861–72. doi:10.1016/S0266-3538(99)00016-0.
  • García-Atance Fatjó G, Hadfield M, Vieillard C, et al. Early stage cavitation erosion within ceramics—an experimental investigation. Ceram Int. 2009;35(8):3301–12. doi:10.1016/j.ceramint.2009.05.020.
  • Padture NP. Environmental degradation of high-temperature protective coatings for ceramic-matrix composites in gas-turbine engines. Npj Mater Degrad. 2019;3(1):11, doi:10.1038/s41529-019-0075-4.
  • Trolier-McKinstry S, Newnham RE. Materials engineering: bonding, structure, and structure-property relationships. Cambridge (GB): Cambridge University Press; 2018. 618 p.
  • Callister WD, Rethwisch DG. Materials science and engineering: an introduction. 2018. Available from: http://catalog.hathitrust.org/api/volumes/oclc/992798630.html.
  • Chen LQ. Thermodynamic equilibrium and stability of materials. Singapore: Springer Singapore; 2022. Available from: https://link.springer.com/10.1007/978-981-13-8691-6.
  • Mauro JC. Materials kinetics: transport and rate phenomena. Amsterdam: Elsevier; 2020. 554 p.
  • Meyers MA, Chawla KK. Mechanical behavior of materials. 2nd ed Cambridge (NY): Cambridge University Press; 2009. 856 p.
  • Wachtman JB, Cannon WR, Matthewson MJ. Mechanical properties of ceramics. 2nd ed Hoboken (N.J): Wiley; 2009. 479 p.
  • Salje EKH. Ferroelastic materials. Annu Rev Mater Res. 2012;42:265–283. doi:10.1146/annurev-matsci-070511-155022.
  • Kolsky H. An investigation of the mechanical properties of materials at very high rates of loading. Proc Phys Soc B. 1949;62(11):676–700. doi:10.1088/0370-1301/62/11/302.
  • Wigley DA. Mechanical properties of materials at low temperatures. Boston (MA): Springer US; 1971; Available from: http://link.springer.com/10.1007/978-1-4684-1887-3.
  • Nakamura T, Qian G, Berndt CC. Effects of pores on mechanical properties of plasma-sprayed ceramic coatings. J Am Ceram Soc. 2000;83(3):578–84. doi:10.1111/j.1151-2916.2000.tb01236.x.
  • Messier R, Giri AP, Roy RA. Revised structure zone model for thin film physical structure. J Vac Sci Technol A: Vac Surf Films. 1984;2(2):500–3. doi:10.1116/1.572604.
  • Mauer G, Hospach A, Zotov N, et al. Process conditions and microstructures of ceramic coatings by gas phase deposition based on plasma spraying. J Therm Spray Tech. 2013;22(2–3):83–9. doi:10.1007/s11666-012-9838-y.
  • Ahn SH, Lee JH, Kim JG, et al. Localized corrosion mechanisms of the multilayered coatings related to growth defects. Surf Coat Technol. 2004;177–178:638–44. doi:10.1016/S0257-8972(03)00939-3.
  • Wu LT, Wu RT, Osada T, et al. Effect of bond coat and substrate chemistry on the interfacial degradation of thermal barrier coatings. In: Hardy M, Huron E, Glatzel U, Griffin B, Lewis B, Rae C, editors. Superalloys 2016. Hoboken, NJ: John Wiley & Sons, Inc.; 2016. p. 167–76. doi:10.1002/9781119075646.ch19.
  • Hocking MG. Coatings resistant to erosive/corrosive and severe environments. Surf Coat Technol. 1993;62(1–3):460–6. doi:10.1016/0257-8972(93)90284-U.
  • Vereschaka A, Volosova M, Chigarev A, et al. Influence of the thickness of a nanolayer composite coating on values of residual stress and the nature of coating wear. Coatings. 2020;10(1):63, doi:10.3390/coatings10010063.
  • Holleck H, Schier V. Multilayer PVD coatings for wear protection. Surf Coat Technol. 1995;76–77:328–36. doi:10.1016/0257-8972(95)02555-3.
  • Cree AM, Hainsworth SV, Weidmann GW. Strain–energy method for determining residual stresses in anodised thin films. Transactions IMF. 2006;84:246–251. doi:10.1179/174591906X130310.
  • Holleck HW. Advanced concepts of PVD hard coatings. Vacuum. 1990;41(7–9):2220–2222. doi:10.1016/0042-207X(90)94229-J.
  • Borawski B. Multilayer erosion resistant coatings for the protection of aerospace components [Doctoral Thesis]. [University Park, PA]: The Pennsylvania State University; 2011.
  • Mayrhofer PH, Mitterer C, Hultman L, et al. Microstructural design of hard coatings. Prog Mater Sci. 2006;51(8):1032–114. doi:10.1016/j.pmatsci.2006.02.002.
  • Newby S. Characterization of diamond-like carbon coatings for industrial applications [Doctoral Thesis]. [University Park, PA]: The Pennsylvania State University; 2016.
  • Poorzal P, Elmkhah H, Mazaheri Y. Correlation between nanoindentation response and wear characteristics of CrN-based coatings deposited by an Arc-PVD method. Int J Applied Ceramic Tech. 2022;19(5):2598–2612. doi:10.1111/ijac.14079.
  • Liu ZTY, Gall D, Khare SV. Electronic and bonding analysis of hardness in pyrite-type transition-metal pernitrides. Phys Rev B. 2014;90(13):134102, doi:10.1103/PhysRevB.90.134102.
  • Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, et al. Commentary: the materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1(1):011002, doi:10.1063/1.4812323.
  • de Jong M, Chen W, Angsten T, et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci Data. 2015;2(1):150009, doi:10.1038/sdata.2015.9.
  • Man CS, Huang M. A simple explicit formula for the Voigt–Reuss–Hill average of elastic polycrystals with arbitrary crystal and texture symmetries. J Elast. 2011;105(1–2):29–48. doi:10.1007/s10659-011-9312-y.
  • Pierson HO. Handbook of Refractory Carbides and Nitrides. 1st ed. Norwich (NY): William Andrew; 1996. Available from: https://www.elsevier.com/books/handbook-of-refractory-carbides-and-nitrides/pierson/978-0-8155-1392-6.
  • Chen WC, Schmidt JN, Yan D, et al. Machine learning and evolutionary prediction of superhard B-C-N compounds. Npj Comput Mater. 2021;7(1):114, doi:10.1038/s41524-021-00585-7.
  • Dongare AM, Rajendran AM, Lamattina B, et al. Atomic-scale study of plastic-yield criterion in nanocrystalline Cu at high strain rates. Metall Mat Trans A. 2010;41(2):523–31. doi:10.1007/s11661-009-0113-x.
  • Yu MH, Li JC. Mesomechanics and multiscale modelling for yield surface. In: Huang M, editor. Computational plasticity. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 447–80. (Advanced Topics in Science and Technology in China). Available from: http://link.springer.com/10.1007/978-3-642-24590-9_19.
  • Asl SK, Sohi MH. Effect of grit-blasting parameters on the surface roughness and adhesion strength of sprayed coating. Surf Interface Anal. 2010;42(6–7):551–4. doi:10.1002/sia.3184.
  • Gatzen C, Mack DE, Guillon O, et al. Improved adhesion of different environmental barrier coatings on Al2O3/Al2O3-ceramic matrix composites. Adv Eng Mater. 2020;22(6):2000087. doi:10.1002/adem.202000087.
  • Rowe GW. The chemistry of tribology, friction, lubrication and wear. R Inst Chem Rev. 1968;1(2):135, doi:10.1039/rr9680100135.
  • Zhang W, Yamashita S, Kita H. Progress in tribological research of SiC ceramics in unlubricated sliding-a review. Mater Des. 2020;190:108528, doi:10.1016/j.matdes.2020.108528.
  • Yang Q. Wear resistance and solid lubricity of molybdenum-containing nitride coatings deposited by cathodic arc evaporation. Surf Coat Technol. 2017;332:283–95. doi:10.1016/j.surfcoat.2017.10.026.
  • Aouadi SM, Luster B, Kohli P, et al. Progress in the development of adaptive nitride-based coatings for high temperature tribological applications. Surf Coat Technol. 2009;204(6–7):962–8. doi:10.1016/j.surfcoat.2009.04.010.
  • Su Z, Jie X, Li W, et al. Effect of C2H2 flow rate and a Ti/TiN/TiCN interlayer on the structure, mechanical and tribological properties of a-C:H films deposited using a hybrid PVD/PECVD process with an anode-layer ion source. Vacuum. 2023;209:111753. doi:10.1016/j.vacuum.2022.111753.
  • Madej M. The effect of TiN and CrN interlayers on the tribological behavior of DLC coatings. Wear. 2014;317(1–2):179–87. doi:10.1016/j.wear.2014.05.008.
  • Dal Maschio R, Sglavo VM, Mattivi L, et al. Indentation method for fracture resistance determination of metal/ceramic interfaces in thick TBCs. J Therm Spray Technol. 1994;3(1):51–6. doi:10.1007/BF02648999.
  • Wang X, Wang C, Atkinson A. Interface fracture toughness in thermal barrier coatings by cross-sectional indentation. Acta Mater. 2012;60(17):6152–63. doi:10.1016/j.actamat.2012.07.058.
  • Rickerby DS. A review of the methods for the measurement of coating-substrate adhesion. Surf Coat Technol. 1988;36(1–2):541–57. doi:10.1016/0257-8972(88)90181-8.
  • Perry AJ. Scratch adhesion testing of hard coatings. Thin Solid Films. 1983;107(2):167–80. doi:10.1016/0040-6090(83)90019-6.
  • Valli J. A review of adhesion test methods for thin hard coatings. J Vac Sci Technol A: Vac Surf Films. 1986;4(6):3007–14. doi:10.1116/1.573616.
  • Alat E, Brova MJ, Younker IM, et al. Neutronic and mechanical evaluation of rare earth doped and undoped nitride-based coatings for accident tolerant fuels. J Nucl Mater. 2019;518:419–30. doi:10.1016/j.jnucmat.2019.02.044.
  • Holmberg K, Matthews A, Ronkainen H. Coatings tribology—contact mechanisms and surface design. Tribol Int. 1998;31(1–3):107–20. doi:10.1016/S0301-679X(98)00013-9.
  • Asanabe S. Applications of ceramics for tribological components. Tribol Int. 1987;20(6):355–64. Available from: https://www.sciencedirect.com/science/article/pii/0301679X87900648.
  • Pedeferri P. Corrosion science and engineering. Berlin: Springer International Publishing; 2018; (Engineering Materials). Available from: http://link.springer.com/10.1007/978-3-319-97625-9..
  • Kramer D, Weissmüller J. A note on surface stress and surface tension and their interrelation via Shuttleworth’s equation and the Lippmann equation. Surf Sci. 2007;601(14):3042–3051. doi:10.1016/j.susc.2007.05.005.
  • Beake BD. The influence of the H/E ratio on wear resistance of coating systems – insights from small-scale testing. Surf Coat Technol. 2022;442:128272, doi:10.1016/j.surfcoat.2022.128272.
  • Lamy B. Effect of brittleness index and sliding speed on the morphology of surface scratching in abrasive or erosive processes. Tribol Int. 1984;17(1):35–8. doi:10.1016/0301-679X(84)90083-5.
  • Schneider JM, Sproul WD, Chia RWJ, et al. Very-high-rate reactive sputtering of alumina hard coatings. Surf Coat Technol. 1997;96(2):262–6. doi:10.1016/S0257-8972(97)00152-7.
  • Wojcieszak D, Mazur M, Indyka J, et al. Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process. Mater Sci-Pol. 2015;33(3):660–8. doi:10.1515/msp-2015-0084.
  • Hones P, Diserens M, Lévy F. Characterization of sputter-deposited chromium oxide thin films. Surf Coat Technol. 1999;120–121:277–83. doi:10.1016/S0257-8972(99)00384-9.
  • Al-Asadi MM, Al-Tameemi HA. A review of tribological properties and deposition methods for selected hard protective coatings. Tribol Int. 2022;176:107919, doi:10.1016/j.triboint.2022.107919.
  • Skjöldebrand C, Tipper JL, Hatto P, et al. Current status and future potential of wear-resistant coatings and articulating surfaces for hip and knee implants. Materials Today Bio. 2022;15:100270. doi:10.1016/j.mtbio.2022.100270.
  • Wang Q, Zhou F, Wang C, et al. Comparison of tribological and electrochemical properties of TiN, CrN, TiAlN and a-C:H coatings in simulated body fluid. Mater Chem Phys. 2015;158:74–81. doi:10.1016/j.matchemphys.2015.03.039.
  • Liu R, Li X, Hu X, et al. Surface modification of a medical grade Co-Cr-Mo alloy by low-temperature plasma surface alloying with nitrogen and carbon. Surf Coat Technol. 2013;232:906–11. doi:10.1016/j.surfcoat.2013.06.122.
  • Gallegos-Cantú S, Hernandez-Rodriguez MAL, Garcia-Sanchez E, et al. Tribological study of TiN monolayer and Tin/CrN (Multilayer and superlattice) on Co–Cr alloy. Wear. 2015;330–331:439–47. doi:10.1016/j.wear.2015.02.010.
  • de Viteri VS, Barandika G, Bayón R, et al. Development of Ti–C–N coatings with improved tribological behavior and antibacterial properties. J Mech Behav Biomed Mater. 2016;55:75–86. doi:10.1016/j.jmbbm.2015.10.020.
  • Shtansky DV, Kiryukhantsev-Korneev P, Sheveyko AN, et al. Hard tribological Ti–Cr–B–N coatings with enhanced thermal stability, corrosion- and oxidation resistance. Surf Coat Technol. 2007;202(4):861–5. doi:10.1016/j.surfcoat.2007.05.064.
  • Huang W, Zalnezhad E, Musharavati F, et al. Investigation of the tribological and biomechanical properties of CrAlTiN and CrN/NbN coatings on SST 304. Ceram Int. 2017;43(11):7992–8003. doi:10.1016/j.ceramint.2017.03.081.
  • Hovsepian P, Ehiasarian AP, Purandare YP, et al. Performance of HIPIMS deposited CrN/NbN nanostructured coatings exposed to 650 °C in pure steam environment. Mater Chem Phys. 2016;179:110–9. doi:10.1016/j.matchemphys.2016.05.017.
  • Novikov V, Stepanov N, Zherebtsov S, et al. Structure and properties of high-entropy nitride coatings. Metals (Basel). 2022;12(5):847, doi:10.3390/met12050847.
  • Guo F, Zhou Z, Hua M, et al. Effect of aqueous solution and load on the formation of DLC transfer layer against Co–Cr–Mo for joint prosthesis. J Mech Behav Biomed Mater. 2015;49:12–22. doi:10.1016/j.jmbbm.2015.04.014.
  • Broitman E. Indentation hardness measurements at macro-, micro-, and nanoscale: A critical overview. Tribol Lett. 2017;65(1):23, doi:10.1007/s11249-016-0805-5.
  • Czichos H, Klaffke D, Santner E, et al. Advances in tribology: the materials point of view. Wear. 1995;190(2):155–61. doi:10.1016/0043-1648(96)80014-7.
  • Halling J. The tribology of surface films. Thin Solid Films. 1983;108(2):103–15. doi:10.1016/0040-6090(83)90496-0.
  • Schmitt MP, Stokes JL, Gorin BL, et al. Effect of Gd content on mechanical properties and erosion durability of sub-stoichiometric Gd2Zr2O7. Surf Coat Technol. 2017;313:177–83. doi:10.1016/j.surfcoat.2016.12.045.
  • Schmitt MP, Stokes JL, Rai AK, et al. Durable aluminate toughened zirconate composite thermal barrier coating (TBC) materials for high temperature operation. J Am Ceram Soc. 2019;102(8):4781–93. doi:10.1111/jace.16317.
  • Schmitt MP, Schreiber JM, Rai AK, et al. Development and optimization of tailored composite TBC design architectures for improved erosion durability. J Therm Spray Tech. 2017;26(6):1062–75. doi:10.1007/s11666-017-0561-6.
  • Jones DA. Principles and prevention of corrosion. 2nd ed Upper Saddle River (NJ): Prentice Hall; 1996. 572 p.
  • Revie RW, Uhlig HH. Corrosion and corrosion control: an introduction to corrosion science and engineering. 4th ed Hoboken (N.J): Wiley-Interscience; 2008. 490 p.
  • Talbot D, Talbot J. Corrosion science and technology. 2nd ed Boca Raton: CRC Press; 2007. 526 p. (Materials science and chemical engineering).
  • Hui R, Cook W, Sun C, et al. Deposition, characterization and performance evaluation of ceramic coatings on metallic substrates for supercritical water-cooled reactors. Surf Coat Technol. 2011;205(11):3512–9. doi:10.1016/j.surfcoat.2010.12.017.
  • Khatkhatay F, Jiao L, Jian J, et al. Superior corrosion resistance properties of TiN-based coatings on Zircaloy tubes in supercritical water. J Nucl Mater. 2014;451(1):346–51. doi:10.1016/j.jnucmat.2014.04.010.
  • Daub K, Van Nieuwenhove R, Nordin H. Investigation of the impact of coatings on corrosion and hydrogen uptake of zircaloy-4. J Nucl Mater. 2015;467:260–70. doi:10.1016/j.jnucmat.2015.09.041.
  • Alat E, Motta AT, Comstock RJ, et al. Ceramic coating for corrosion (C3) resistance of nuclear fuel cladding. Surf Coat Technol. 2015;281:133–43. doi:10.1016/j.surfcoat.2015.08.062.
  • Alat E, Motta AT, Comstock RJ, et al. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding. J Nucl Mater. 2016;478:236–44. doi:10.1016/j.jnucmat.2016.05.021.
  • Bryner JS. The cyclic nature of corrosion of zircaloy-4 in 633 K water. J Nucl Mater. 1979;82(1):84–101. doi:10.1016/0022-3115(79)90042-4.
  • Sickafus KE, Wirth B, Miller L, et al. Ceramic coatings for Clad (The C3 project): advanced accident-tolerant ceramic coatings for Zr-alloy cladding. 2017 [cited March 6, 2023] p. 12–4722, 1347703. Report No.: 12–4722, 1347703. Available from: http://www.osti.gov/servlets/purl/1347703/.
  • Liscano S, Gil L, Staia MH. Effect of sealing treatment on the corrosion resistance of thermal-sprayed ceramic coatings. Surf Coat Technol. 2004;188–189:135–9. doi:10.1016/j.surfcoat.2004.08.009.
  • Guo HF, An MZ. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate–fluoride solutions and evaluation of corrosion resistance. Appl Surf Sci. 2005;246(1):229–38. doi:10.1016/j.apsusc.2004.11.031.
  • Guo H, An M, Xu S, et al. Microarc oxidation of corrosion resistant ceramic coating on a magnesium alloy. Mater Lett. 2006;60(12):1538–41. doi:10.1016/j.matlet.2005.11.066.
  • Chen F, Zhou H, Yao B, et al. Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces. Surf Coat Technol. 2007;201(9):4905–8. doi:10.1016/j.surfcoat.2006.07.079.
  • Guan Y, Xia Y, Li G. Growth mechanism and corrosion behavior of ceramic coatings on aluminum produced by autocontrol AC pulse PEO. Surf Coat Technol. 2008;202(19):4602–12. doi:10.1016/j.surfcoat.2008.03.031.
  • Luo H, Cai Q, Wei B, et al. Study on the microstructure and corrosion resistance of ZrO2-containing ceramic coatings formed on magnesium alloy by plasma electrolytic oxidation. J Alloys Compd. 2009;474(1–2):551–6. doi:10.1016/j.jallcom.2008.06.151.
  • Durdu S, Aytaç A, Usta M. Characterization and corrosion behavior of ceramic coating on magnesium by micro-arc oxidation. J Alloys Compd. 2011;509(34):8601–6. doi:10.1016/j.jallcom.2011.06.059.
  • Sreekanth D, Rameshbabu N, Venkateswarlu K. Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation. Ceram Int. 2012;38(6):4607–15. doi:10.1016/j.ceramint.2012.02.040.
  • Shao F, Yang K, Zhao H, et al. Effects of inorganic sealant and brief heat treatments on corrosion behavior of plasma sprayed Cr2O3–Al2O3 composite ceramic coatings. Surf Coat Technol. 2015;276:8–15. doi:10.1016/j.surfcoat.2015.06.045.
  • Shokouhfar M, Allahkaram SR. Effect of incorporation of nanoparticles with different composition on wear and corrosion behavior of ceramic coatings developed on pure titanium by micro arc oxidation. Surf Coat Technol. 2017;309:767–78. doi:10.1016/j.surfcoat.2016.10.089.
  • Liu J, Liu H, Chen P, et al. Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding. Surf Coat Technol. 2019;361:63–74. doi:10.1016/j.surfcoat.2019.01.044.
  • Schmitt M. Calcium-Magnesium-Alumino-Silicate (CMAS) degradation, erosion resistance and thermal conductivity of thermal barrier coatings with unique design architectures. University Park (PA): The Pennsylvania State University Applied Research Laboratory; 2011.
  • Rai AK, Bhattacharya RS, Wolfe DE, et al. CMAS-Resistant thermal barrier coatings (TBC). Int J Appl Ceram Technol. 2010;7(5):662–74. doi:10.1111/j.1744-7402.2009.02373.x.
  • Schmidt-Verma AK, Renner AM, Wilhelm M, et al. High-temperature ultrahydrophobic ceramic coatings from surface-functionalized MgAl2O4 nanoparticles. Adv Eng Mater. 2021;23(2):1–8. Article number 202000738. doi:10.1002/adem.202000738.
  • Mayrhofer PH, Mitterer C, Clemens H. Self-organized nanostructures in hard ceramic coatings. Adv Eng Mater. 2005;7(12):1071–82. doi:10.1002/adem.200500154.
  • Joshi SV, Sivakumar G. Hybrid processing with powders and solutions: a novel npproach to deposit composite coatings. J Therm Spray Tech. 2015;24(7):1166–86. doi:10.1007/s11666-015-0284-5.
  • Gui B, Zhou H, Zheng J, et al. Microstructure and properties of TiAlCrN ceramic coatings deposited by hybrid HiPIMS/DC magnetron co-sputtering. Ceram Int. 2021;47(6):8175–83. doi:10.1016/j.ceramint.2020.11.175.
  • Fan Z, Sun X, Zhuo X, et al. Femtosecond laser polishing yttria-stabilized zirconia coatings for improving molten salts corrosion resistance. Corros Sci. 2021;184:109367, doi:10.1016/j.corsci.2021.109367.
  • Donthu S, Pan Z, Myers B, et al. Facile scheme for fabricating solid-state nanostructures using E-beam lithography and solution precursors. Nano Lett. 2005;5(9):1710–5. doi:10.1021/nl050954t.
  • Dong Y, Yang Y, Chu Z, et al. Effect of annealing in Ar on the microstructure and properties of thick nano-grained TiN ceramic coatings. Ceram Int. 2017;43(12):9303–9. doi:10.1016/j.ceramint.2017.04.091.
  • Bondioli F, Taurino R, Ferrari AM. Functionalization of ceramic tile surface by sol–gel technique. J Colloid Interface Sci. 2009;334(2):195–201. doi:10.1016/j.jcis.2009.02.054.
  • Bartosik M, Rumeau C, Hahn R, et al. Fracture toughness and structural evolution in the TiAlN system upon annealing. Sci Rep. 2017;7(1):16476, doi:10.1038/s41598-017-16751-1.
  • Toher C, Oses C, Esters M, et al. High-entropy ceramics: propelling applications through disorder. MRS Bull. 2022;47(2):194–202. doi:10.1557/s43577-022-00281-x.
  • Hossain MD, Borman T, Oses C, et al. Entropy landscaping of high-entropy carbides. Adv Mater. 2021;33(42):2102904, doi:10.1002/adma.202102904.
  • Feng L, Fahrenholtz WG, Hilmas GE, et al. Boro/carbothermal reduction co-synthesis of dual-phase high-entropy boride-carbide ceramics. J Eur Ceram Soc. 2023;43(6):2708–12. doi:10.1016/j.jeurceramsoc.2022.12.056.
  • Eldridge JI, Singh J, Wolfe DE. Health sensing functions in thermal barrier coatings incorporating rare-earth-doped luminescent sublayers. NASA; 2004. Report No.: 22IRD00003. Available from: https://ntrs.nasa.gov/citations/20050203886.
  • Abuchenari A, Ghazanfari H, Siavashi M, et al. A review on development and application of self-healing thermal barrier composite coatings. J Compos Compd. 2019;2(4):147–54. doi:10.29252/jcc.2.3.6.
  • Huang J, Guo L, Zhong L. Synergistic healing mechanism of self-healing ceramics coating. Ceram Int. 2022;48(5):6520–7. doi:10.1016/j.ceramint.2021.11.198.
  • Stankiewicz A, Szczygieł I, Szczygieł B. Self-healing coatings in anti-corrosion applications. J Mater Sci. 2013;48(23):8041–51. doi:10.1007/s10853-013-7616-y.
  • Aouadi SM, Gu J, Berman D. Self-healing ceramic coatings that operate in extreme environments: a review. J Vac Sci Technol A. 2020;38(5):1–14. Article number 050802. doi:10.1116/6.0000350.
  • Kozlovskiy AL, Zdorovets MV. Study of hydrogenation processes in radiation-resistant nitride ceramics. J Mater Sci: Mater Electron. 2020;31(14):11227–37. doi:10.1007/s10854-020-03671-6.
  • Dukenbayev K, Kozlovskiy A, Korolkov I, et al. Investigation of radiation resistance of AlN ceramics. Vacuum. 2019;159:144–51. doi:10.1016/j.vacuum.2018.10.037.
  • Calzolari A, Oses C, Toher C, et al. Plasmonic high-entropy carbides. Nat Commun. 2022;13(1):5993, doi:10.1038/s41467-022-33497-1.
  • Xu B, Xiang H, Yin J, et al. A two-dimensional tetragonal yttrium nitride monolayer: a ferroelastic semiconductor with switchable anisotropic properties. Nanoscale. 2018;10(1):215–21. doi:10.1039/C7NR05679F.
  • Talley KR, Sherbondy R, Zakutayev A, et al. Review of high-throughput approaches to search for piezoelectric nitrides. J Vac Sci Technol A. 2019;37(6):060803, doi:10.1116/1.5125648.
  • Wang J, Wu F, Zou R, et al. High-entropy ferroelastic rare-earth tantalite ceramic: (Y0.2Ce0.2Sm0.2Gd0.2Dy0.2)TaO4. J Am Ceram Soc. 2021;104(11):5873–82. doi:10.1111/jace.17932.
  • Soydan MC, Ghobadi A, Yildirim DU, et al. All ceramic-based metal-free ultra-broadband perfect absorber. Plasmonics. 2019;14(6):1801–15. doi:10.1007/s11468-019-00976-z.
  • Sova A, Kosarev VF, Papyrin A, et al. Effect of ceramic particle velocity on cold spray deposition of metal-ceramic coatings. J Therm Spray Tech. 2011;20(1–2):285–91. doi:10.1007/s11666-010-9571-3.
  • Al-Hamdani KS, Murray JW, Hussain T, et al. Cold sprayed metal-ceramic coatings using satellited powders. Mater Lett. 2017;198:184–7. doi:10.1016/j.matlet.2017.03.175.
  • Sova A, Papyrin A, Smurov I. Influence of ceramic powder size on process of cermet coating formation by cold spray. J Therm Spray Tech. 2009;18(4):633–41. doi:10.1007/s11666-009-9359-5.
  • Koivuluoto H, Vuoristo P. Structural analysis of cold-sprayed nickel-based metallic and metallic-ceramic coatings. J Therm Spray Tech. 2010;19(5):975–89. doi:10.1007/s11666-010-9481-4.
  • Winnicki M. Advanced functional metal-ceramic and ceramic coatings deposited by Low-pressure cold spraying: A review. Coatings. 2021;11(9):1044, doi:10.3390/coatings11091044.
  • Ravanbakhsh S, Assadi H, Nekoomanesh H, et al. Cold spraying of ceramic coatings – a feasibility study. In: Marple BR, Agarwal A, Hyland MM, Lau YC, Li CJ, Lima RS, Hamburg: pub; 2011. p. 303–7. Available from: https://dl.asminternational.org/itsc/proceedings/ITSC%202011/83713/303/24333.
  • Zanurin A, Johari NA, Alias J, et al. Research progress of sol-gel ceramic coating: a review. Mater Today: Proc. 2022;48:1849–54. doi:10.1016/j.matpr.2021.09.192.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.