243
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Highly wear resistant dual-phase (Ti-Zr-Nb-Hf-Ta)C/(Ti-Zr-Nb-Hf-Ta) B2 high-entropy ceramics

, , , , , , , , & show all
Pages 107-118 | Received 07 Mar 2023, Accepted 14 Jul 2023, Published online: 27 Jul 2023

References

  • Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448–511. doi:10.1016/j.actamat.2016.08.081
  • Yeh JW, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6:299–303. doi:10.1002/adem.200300567
  • Zhang RZ, Reece MJ. Review of high entropy ceramics: design, synthesis, structure and properties. J Mater Chem A. 2019;7:22148–22162. doi:10.1039/C9TA05698J
  • Oses C, Toher C, Curtarolo S. High-entropy ceramics. Nat Rev Mater. 2020;5:295–309. doi:10.1038/s41578-019-0170-8
  • Akrami S, Edalati P, Fuji M, et al. High-entropy ceramics: review of principles, production and applications. Mater Sci Eng R Reports. 2021;146:100644. doi:10.1016/j.mser.2021.100644
  • Yu D, Yin J, Zhang B, et al. Recent development of high-entropy transitional carbides: a review. J Ceram Soc Japan Rev. 2020;128. doi:10.2109/jcersj2
  • Gild J, Zhang Y, Harrington T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci Rep. 2016;6. doi:10.1038/srep37946
  • Castle E, Csanádi T, Grasso S, et al. Processing and properties of high-entropy ultra-high temperature carbides. Sci Rep. 2018;8. doi:10.1038/s41598-018-26827-1
  • Sarker P, Harrington T, Toher C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat Commun. 2018;9. doi:10.1038/s41467-018-07160-7
  • Harrington TJ, Gild J, Sarker P, et al. Phase stability and mechanical properties of novel high entropy transition metal carbides. Acta Mater. 2019;166:271–280. doi:10.1016/j.actamat.2018.12.054
  • Ye B, Wen T, Nguyen MC, et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics. Acta Mater. 2019;170:15–23. doi:10.1016/j.actamat.2019.03.021
  • Zhang Y, Guo WM, Bin Jiang Z, et al. Dense high-entropy boride ceramics with ultra-high hardness. Scr Mater. 2019;164:135–139. doi:10.1016/j.scriptamat.2019.01.021
  • Wang Y, Csanádi T, Zhang H, et al. Enhanced hardness in high-entropy carbides through atomic randomness. Adv Theory Simul. 2020;3. doi:10.1002/adts.202000111
  • Feng L, Monteverde F, Fahrenholtz WG, et al. Superhard high-entropy AlB2-type diboride ceramics. Scr Mater. 2021;199. doi:10.1016/j.scriptamat.2021.113855
  • Qin M, Gild J, Hu C, et al. Dual-phase high-entropy ultra-high temperature ceramics. J Eur Ceram Soc. 2020;40:5037–5050. doi:10.1016/j.jeurceramsoc.2020.05.040
  • Luo S-C, Guo W-M, Plucknett K, et al. Fine-grained dual-phase high-entropy ceramics derived from boro/carbothermal reduction. J Eur Ceram Soc. 2020. doi:10.21203/rs.3.rs-58173/v1
  • Huo S, Chen L, Liu X, et al. Reactive sintering of dual-phase high-entropy ceramics with superior mechanical properties. J Mater Sci Technol. 2022;129:223–227. doi:10.1016/j.jmst.2022.03.035
  • Smith SM, Feng L, Fahrenholtz WG, et al. High-entropy boride–carbide ceramics by sequential boro/carbothermal synthesis. J Am Ceram Soc. 2022. doi:10.1111/jace.18517
  • Feng L, Fahrenholtz WG, Hilmas GE, et al. Boro/carbothermal reduction co-synthesis of dual-phase high-entropy boride-carbide ceramics. J Eur Ceram Soc. 2023;43:2708–2712. doi:10.1016/j.jeurceramsoc.2022.12.056
  • Smith SM, Fahrenholtz WG, Hilmas GE, et al. Pressureless sintering of dual-phase, high-entropy boride–carbide ceramics. J Am Ceram Soc. 2023;106:3359–3363. doi:10.1111/jace.19053
  • Sun Q, Tan H, Zhu S, et al. Single-phase (Hf-Mo-Nb-Ta-Ti)C high-entropy ceramic: a potential high temperature anti-wear material. Tribol Int. 2021;157:106883. doi:10.1016/j.triboint.2021.106883
  • Kavak S, Bayrak KG, Bellek M, et al. Synthesis and characterization of (HfMoTiWZr)C high entropy carbide ceramics. Ceram Int. 2022;48:7695–7705. doi:10.1016/j.ceramint.2021.11.317
  • Chen H, Wu Z, Liu M, et al. Synthesis, microstructure and mechanical properties of high-entropy (VNbTaMoW)C5 ceramics. J Eur Ceram Soc. 2021;41:7498–7506. doi:10.1016/j.jeurceramsoc.2021.07.063
  • Dusza J, Csanádi T, Medveď D, et al. Nanoindentation and tribology of a (Hf-Ta-Zr-Nb-Ti)C high-entropy carbide. J Eur Ceram Soc. 2021;41:5417–5426. doi:10.1016/j.jeurceramsoc.2021.05.002
  • Naughton Duszová A, Ďaková L, Csanádi T, et al. Nanohardness and indentation fracture resistance of dual-phase high-entropy ceramic. Ceram Int on line. doi:10.1016/j.ceramint.2022.12.027
  • Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res. 2004;19:3–20. doi:10.1557/jmr.2004.19.1.3
  • Anstis GR, Chantikul P, Lawn BR. A critical evaluation of indentation techniques for measuring fracture toughness: I direct crack measurements. J Am Ceram Soc. 1981;64:533–538. doi:10.1111/j.1151-2916.1981.tb10320.x
  • Medveď D, Ivor M, Kovalčíková A, et al. Wear behavior of (Mi-Nb-Ta-V-W)C high-entropy carbide. Int J Appl Ceram Technol. 2023;20:224–235. doi:10.1111/ijac.14111
  • Li J, Zhou Y, Su Y, et al. Synthesis and mechanical and elevated temperature tribological properties of a novel high-entropy (TiVNbMoW)C4.375 with carbon stoichiometry deviation. J Adv Ceram. 2023;12:242–257. doi:10.26599/JAC.2023.9220679
  • Sun Q, Chen L, Cheng J, et al. Self-lubrication of single-phase high-entropy ceramic enabled by tribo-induced amorphous carbon. Scr Mater. 2023;227:115273. doi:10.1016/j.scriptamat.2022.115273
  • Debnath D, Chakraborty S, Mallick AR, et al. Mechanical, tribological and thermal properties of hot pressed ZrB2–SiC composite with SiC of different morphology. Adv Appl Ceram. 2015;114:45–54. doi:10.1179/1743676114Y.0000000189
  • Chakraborty S, Debnath D, Mallick AR, et al. Mechanical, tribological, and thermal properties of hot-pressed ZrB2–B4C composite. Int J Appl Ceram Technol. 2015;12:568–576. doi:10.1111/ijac.12290
  • Medveď D, Balko J, Sedlák R, et al. Wear resistance of ZrB2 based ceramic composites. Int J Refract Met Hard Mater. 2019;81:214–224. doi:10.1016/j.ijrmhm.2019.03.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.