Publication Cover
Advances in Applied Ceramics
Structural, Functional and Bioceramics
Volume 122, 2023 - Issue 5-8
220
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

From stoichiometric to non-stoichiometric high-entropy carbide: a case study of hafnium addition

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 259-265 | Received 16 Mar 2023, Accepted 27 Jul 2023, Published online: 17 Aug 2023

References

  • Rost CM, Sachet E, Borman T, et al. Entropy-stabilized oxides. Nat Commun. 2015;6:8485. doi:10.1038/ncomms9485
  • Li F, Zhou L, Liu JX, et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. J Adv Ceram. 2019;8(4):576–582. doi:10.1007/s40145-019-0342-4
  • Sarker P, Harrington T, Toher C, et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat Commun. 2018;9(1):4980. doi:10.1038/s41467-018-07160-7
  • Medved’ D, Ivor M, Kovalčíková A, et al. Wear behavior of (Mo–Nb–Ta–V–W) C high-entropy carbide. Int J Appl Ceram Technol. 2023;20(1):224–235. doi:10.1111/ijac.14111
  • Wang YC. Processing and properties of high entropy carbides. Adv Appl Ceram. 2022;121(2):57–78. doi:10.1080/17436753.2021.2014277
  • Zhang PX, Ye L, Chen FH, et al. Stability, mechanical, and thermodynamic behaviors of (TiZrHfTaM)C (M = Nb, Mo, W, V, Cr) high-entropy carbide ceramics. J Alloy Compd. 2022;903:163868. doi:10.1016/j.jallcom.2022.163868
  • Wu Y, Bao W, Shen XQ, et al. Zrb2-based solid solution ceramics and their mechanical and thermal properties. Int J Appl Ceram Technol. 2023;20(2):790–802. doi:10.1111/ijac.14170
  • Gild J, Zhang Y, Harrington T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci Rep. 2016;6(1):37946. doi:10.1038/srep37946
  • Shen XQ, Liu JX, Li F, et al. Preparation and characterization of diboride-based high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2–SiC particulate composites. Ceram Int. 2019;45(18):24508–24514. doi:10.1016/j.ceramint.2019.08.178
  • Qin Y, Liu JX, Li F, et al. A high entropy silicide by reactive spark plasma sintering. J Adv Ceram. 2019;8(1):148–152. doi:10.1007/s40145-019-0319-3
  • Gild J, Braun J, Kaufmann K, et al. A high-entropy silicide:(Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. J Materiomics. 2019;5(3):337–343. doi:10.1016/j.jmat.2019.03.002
  • Kostenko MG, Li J, Zeng Z, et al. Vacancy ordered phases of nonstoichiometric hafnium carbide from evolutionary crystal structure predictions. J Alloy Compd. 2022;891:162063. doi:10.1016/j.jallcom.2021.162063
  • Zhao SJ. Lattice distortion in high-entropy carbide ceramics from first-principles calculations. J Am Ceram Soc. 2021;104(4):1874–1886. doi:10.1111/jace.17600
  • Chen L, Zhang W, Lu W, et al. Low thermal conductivity of dense (TiZrHfVNbTa)Cx high-entropy carbides by tailoring carbon stoichiometry. J Adv Ceram. 2023;12(1):49–58. doi:10.26599/JAC.2023.9220665
  • Meng H, Chu YH. Surface energies in high-entropy carbides with variable carbon stoichiometry. J Am Ceram Soc. 2022;105(9):5835–5842. doi:10.1111/jace.18521
  • Li J, Zhou Y, Su Y, et al. Synthesis and mechanical and elevated temperature tribological properties of a novel high-entropy (TiVNbMoW)C4.375 with carbon stoichiometry deviation. J Adv Ceram. 2023;12(2):242–257. doi:10.26599/JAC.2023.9220679
  • Wang XG, Liu JX, Kan YM, et al. Effect of solid solution formation on densification of hot-pressed ZrC ceramics with MC (M = V, Nb, and Ta) additions. J Eur Ceram Soc. 2012;32(8):1795–1802. doi:10.1016/j.jeurceramsoc.2011.10.045
  • Wei BX, Chen L, Wang YJ, et al. Densification, mechanical and thermal properties of ZrC1−x ceramics fabricated by two-step reactive hot pressing of ZrC and ZrH2 powders. J Eur Ceram Soc. 2018;38(2):411–419. doi:10.1016/j.jeurceramsoc.2017.09.027
  • Wang XG, Guo WM, Kan YM, et al. Densification behavior and properties of hot-pressed ZrC ceramics with Zr and graphite additives. J Eur Ceram Soc. 2011;31(6):1103–1111. doi:10.1016/j.jeurceramsoc.2011.01.005
  • Gusev AI, Zyryanova AN. Ordering and magnetic susceptibility of non-stoichiometric hafnium carbide. Phys Status Solidi A. 2000;177(2):419–437. doi:10.1002/(SICI)1521-396X(200002)177:2<419::AID-PSSA419>3.0.CO;2-J
  • Zhou Y, Fahrenholtz WG, Graham J, et al. Electronic structure and thermal conductivity of zirconium carbide with hafnium additions. J Am Ceram Soc. 2021;104(9):4708–4717. doi:10.1111/jace.17860
  • Zhou Y, Fahrenholtz WG, Graham J, et al. From thermal conductive to thermal insulating: effect of carbon vacancy content on lattice thermal conductivity of ZrCx. J Mater Sci Technol. 2021;82:105–113. doi:10.1016/j.jmst.2020.11.068
  • Peng C, Tang H, He Y, et al. A novel non-stoichiometric medium-entropy carbide stabilized by anion vacancies. J Mater Sci Technol. 2020;51:161–166. doi:10.1016/j.jmst.2020.02.049
  • He Y, Peng C, Xin SW, et al. Vacancy effect on the preparation of high-entropy carbides. J Mater Sci. 2020;55(16):6754–6760. doi:10.1007/s10853-020-04471-3
  • Song JT, Chen GQ, Xiang HM, et al. Regulating the formation ability and mechanical properties of high-entropy transition metal carbides by carbon stoichiometry. J Mater Sci Technol. 2022;121:181–189. doi:10.1016/j.jmst.2021.12.063
  • Lu WY, Chen L, Zhang W, et al. Single-phase formation and mechanical properties of (TiZrNbTaMo)C high-entropy ceramics: first-principles prediction and experimental study. J Eur Ceram Soc. 2022;42(5):2021–2027. doi:10.1016/j.jeurceramsoc.2021.12.058
  • Vasanthakumar K, Gorle R, Ariharan S, et al. Novel single phase (Ti0.2W0.2Ta0.2Mo0.2V0.2)C0.8 high entropy carbide using ball milling followed by reactive spark plasma sintering. J Eur Ceram Soc. 2021;41(13):6756–6762. doi:10.1016/j.jeurceramsoc.2021.06.009
  • Luo SC, Guo WM, Fang ZL, et al. Effect of carbon content on the microstructure and mechanical properties of high-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx ceramics. J Eur Ceram Soc. 2022;42(2):336–343. doi:10.1016/j.jeurceramsoc.2021.10.019
  • Lin GW, Liu JX, Qin Y, et al. Low-temperature reactive sintering of carbon vacant high-entropy carbide ceramics with in-situ formed silicon carbide. J Am Ceram Soc. 2022;105(4):2392–2398. doi:10.1111/jace.18276
  • Zhang W, Chen L, Lu W, et al. Non-stoichiometry of (TiZrHfVNbTa)Cx and its significance to the microstructure and mechanical properties. J Eur Ceram Soc. 2022;42(14):6347–6355. doi:10.1016/j.jeurceramsoc.2022.07.007
  • Lu K, Liu JX, Wei XF, et al. Microstructures and mechanical properties of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C ceramics with the addition of SiC secondary phase. J Eur Ceram Soc. 2020;40(54):1839–1847. doi:10.1016/j.jeurceramsoc.2019.12.056
  • Wei XF, Qin Y, Liu JX, et al. Gradient microstructure development and grain growth inhibition in high-entropy carbide ceramics prepared by reactive spark plasma sintering. J Eur Ceram Soc. 2020;40(4):935–941. doi:10.1016/j.jeurceramsoc.2019.12.034
  • Wei XF, Liu JX, Bao WC, et al. High-entropy carbide ceramics with refined microstructure and enhanced thermal conductivity by the addition of graphite. J Eur Ceram Soc. 2021;41(9):4747–4754. doi:10.1016/j.jeurceramsoc.2021.03.053
  • Sarkar A, Wang QS, Schiele A, et al. High-entropy oxides: fundamental aspects and electrochemical properties. Adv Mater. 2019;31(26):1806236. doi:10.1002/adma.201806236
  • Oliver WC, Pharr GM. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–1583. doi:10.1557/JMR.1992.1564
  • Yu D, Yin J, Zhang BH, et al. Pressureless sintering and properties of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics: the effect of pyrolytic carbon. J Eur Ceram Soc. 2021;41(6):3823–3831. doi:10.1016/j.jeurceramsoc.2021.01.048
  • Yu D, Zhang BH, Yin J, et al. Densifying (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics by two-step pressureless sintering. J Am Ceram Soc. 2022;105(1):76–81. doi:10.1111/jace.18116
  • Zhao X, Yu S, Zheng JM, et al. Machine learning of carbon vacancy formation energy in high-entropy carbides. J Eur Ceram Soc. 2023;43(4):1315–1321. doi:10.1016/j.jeurceramsoc.2022.11.044
  • Qin Y, Liu JX, Liang YC, et al. Equiatomic 9-cation high-entropy carbide ceramics of the IVB, VB, and VIB groups and thermodynamic analysis of the sintering process. J Adv Ceram. 2022;11(7):1082–1092. doi:10.1007/s40145-022-0594-2
  • Rowe D, Shukla V. The effect of phonon-grain boundary scattering on the lattice thermal conductivity and thermoelectric conversion efficiency of heavily doped fine-grained, hot-pressed silicon germanium alloy. J Appl Phys. 1981;52(12):7421–7426. doi:10.1063/1.328733

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.